WestMOST Proposal for “Project Course”

<t MOST -
B "'-\.-H
£ I

L

Dashboard Software Metric
Visualization for SQR

April 2003

Prepared By:John James Willson

file:///IC|/westmost/finalrpt/Copy%200f%20final.htm (1 of 56) [4/28/2003 2:34:09 PM]

WestMOST Proposal for “Project Course”

Table of Contents

EXECUTIVE
SUMM ARY et b e b b e e b b e b oo R e R e R e R e R R e R h bR n e r s 4

1.
A I O 16 O I O TP PP
6

11
L0 O I PPN 6
1.2

1.3

N (O X X USSR 7

1.4

BACK GROUND. ... coittiieiese st eteeee e seestesseeseessestesseeseeseessessesseaseeseaseaseaseaseassesseaseaseaseensesseaseaseeneensesseaseaseeneenseseeasesneensnnsessens 8
(R S O I (0 1S © SO PP TP
9
1.3.2 SOR PrOgram SITUCIUIE......eiiiiiiitieetie st ste st e et ste e ssee et s s sssseessee e be e sabeesaseesbee e beeaaseesaeeenbeeeabeeanbeesaeeenbeesnneennsenns 10
1.3.3 SOR LANQUAGE SIIUCLUIE........eeeeeeeieeeiee st esiteesiee st e steesseeessessssesssseesseeesseeansesssseeaseeeseeanseesnseeaseeeseeanseesnseenseaensenans 11
1.3.4 ObjeCt BASed SQR PrOQIaAIM.......cc.eiiieieeite e ieesee st esteeteeaeesteesteesteesesseaaseesseesseenseessesseesseesseeseensesseesseesseensennsesnnens 12
1.3.5 ClaSSIC SQR IMELIICS....cuveueeueeueeeesiesieeteeeeseestestesseeeeseeseesteaseeseesessessesseeseesesseaseaseenseseaseaseaseassenseaseasenneensessnssensennens 13

20 CURRENT STATE SURVEY ...ttt s bbbt a bbb n e bbb e n e n e nn e
15

P2 Y I T USRS
15
P I R D = - W T 11 = o RSP
15

15
2.2 SURVEY RESULTS SUMMARYooiieieetieieitese st ee e e stes e ssesseeseessessessessesseessessesseasesssessessessessesssessessessesseessessessessessennes
16
2.2.1 SOftware SOUICE LINE VISUBIIZENS.........oiueiieriiieeiestes ettt bttt bbbt b e 17
2.2.2 REVISION CONLIOI SYSLEIMS.....c.iiiiiiiiiie sttt ettt et e e b e st e et e e beeseesaeesseesbe et e e aeesaeeeseesbeenbeenseesaeaneenreenseanns 18
2.2.3 SQRVISUBLIZEIS......oeeieeeectie ettt ettt ettt et e et e et e e ebeeebeesaaeeebesebeesaseessseebeeanseessbeessseeseeanbeeeaseesseeenbessnteesaneeseennsens
18
F S @ 1 |V < (oSS
19
2.2.5 History of SQL Analyzers, Lexical Analyzers, Parsers, and ViSUaliZErS.........ccoocvveeieeieniescie e 19
GRS @ PSR S PR
19
S < L= ot Y SN 7= RS 20

file:///IC|/westmost/finalrpt/Copy%200f%20final.htm (2 of 56) [4/28/2003 2:34:09 PM]

WestMOST Proposal for “Project Course”

25

B IMETHOD ..o e e e et e ettt eeeeeeeeeeseeeea e eeeeeaeaaasssaesaaaassseneeeaaeaeasessaaaaa s ssaeeeeeseesessasaaaasssseeneeeeeeneeeesasaaennenenneees
25
B2 PROCESS IMPROV EMENT ...ttt e e e e et e e e e e et e e e e e eeeeeeae e eeeeeaaeseeeeeeeaneeeeseaaeeeeeseaanreeeeseaaneeeesaaanes
26
B B I RST PROT OTY PE. ...t e e e e e et e e e e e et eee e e e e eeeeeeeeaeeeeeeeeeeeeeeeeeeeneeeeeeeaeeeeaeeeaananeeeseaaneeeeenaaans
26
B4 SOFTWARE TOOLS...ceeeeeeeeeee oot e e e e e et ettt eeeeeeeeeeeeee e eeeeeeeeaeeeeeeaaaeeseeeeeeeaeaeeeeseaasaaaseeseneeesaeenessesaaannsnnnnneees
29
G R DT o] = Vo o1 o g PSPPSR
29
3. 4.2 TraditioNal SOMWWAT € MBI ICS SOIBEN. ...t e e e e e e e e ettt eeeeeeeeeeeeaeeeeeeeeeeeeeeeeseeaaaenneneneeeaeeeens 30
3.5 RECOMMENDATIONS FOR APPLICATION....cce ettt e e e e e e et e e e e e e e e e e e ea e e e e eeeeeaeeeaeenaeeeaaa
31
I B s =0 [[o ISP
31
3.5.2 SAECLEA FiXEA VISUBITZALIONS.ceeeeeeeeeee e et e e e ettt et e e e eeeeasa s e eeeeeeeeeaeesesaaansseeseeeeeeeesssesasaassssnneeeeseseeesaaanans 31

4.0 APPLICATION OF PROCESS AND TOOLS......coi ittt n e e e e nneene s
33

g Y I 5 USSP PRSRSRRN
33
4.2 DOMAIN DESCRIPTION.ccuttiiieiteiteetieeenieseestesseeeessessessesseeseessessessessesssessessessesseessessessesseaseensessessessesssessessessessemssensesses
33
4.3 PROCESS IMPROVEMENT RESULTS.......otiieieiistseeeeies sttt s te e seessestestesseeseesessesseesaeseensessessenssnnsensessessensenns
33
G T I T =T =[S o o OSSR
34
G B =0 (=S [0l U (=SS
34
4.4 SOFTWARE TOOL RESULTS.....ccuteieieitsteeeeiesestesteeseeeeseestesteeseeseesssssessesseaseessessessesseassensessessessesseensessessessessenssensessenses
35
4.4.1 Large appliCatiON SUITE VIBW......cc.eiiueiieiiiesieesieeieeeesiee st e e tesseesseesseesseeseesseesseesseebeesseaseeeseesseenseenseaneeaneesseensennns 35
A g ez Tag o FST= o g (o0 7= L /U SR 36
N 01U [= T g I ol PP 37
4.4.4 Another kind of appliCatioN SUITE OVEN VIEW..........couirierieriieieiese st ee ettt ssesse e e saesaesseeneeneeneeseesneene 38
4.4.5 The appliCatiON SUITE CAll THEE VIBW........cciieieeeeeiee ettt seestesaeeseeeessesteeneeneensenaessennens 39
4.4.6 Includes can be VISUAlIZEA AS SQRS.........coiiiiie et sttt et st ae e s ae et e et e st e e neesreenreennas 41
4.4.7 Developers individual [INES@r@ VIBWEH...........oouiiiiiieeiesesiieee ettt nenne s 42
4.4.8 The development manager's dashDOAI............ooiiiiiiiiiiie e s b e be e sreesreens 43
4.5 END-USER EVALUATION. ...ttt sttt st be s s e se st e sbe s he e e e e e sb e e b e eh e e s e e s e bt eb e nbeeaeesenbeabeebeennenenens
44

file:///IC|/westmost/finalrpt/Copy%200f%20final.htm (3 of 56) [4/28/2003 2:34:09 PM]

WestMOST Proposal for “Project Course”

a7

5.0 CONCLUSIONS AND RECOMMENDATIONS..... .ottt sme e nneenne e nnne e

49

5.1 IMPACT OF INDUSTRIAL APPLICATION.. ..ottt nn e nne s ne s

49

5.2 ADOPTION ISSUES....... .ottt s e e m e e s e e e e ae e e Re e e Re e st emn e s me e sReeam e e neennenmnenreeaneeneennennnin

49

S.3IMPLEMENTATION PLAN oottt bbb b e e bbb e s e e b b e n e nr s

50

5.4 CONCLUSION.......etittitiietit ettt e bt eh e ae e e e R e e R e e a e e s e e R e b £ e R e e e s e b e s e eb e e b b e as e b e e b e e b e e he e e e n e s be e b e e e e nenne

50

o et =11 1 PPN

52

E. Participants requiring an email copy Of the rePOIt...........ccooeiiieiieieiee s 61
F. Example Citation Searching for Lexical, SQL, Parsing SOftWare...........cccceeeeverernreneereenennen. 62

List of Figures

Figure 1 SQL to SQR Conversion or What's SQL and What's SQR..........cooieeiieiie e 9
Figure 2 SQR Language Program FIOW..........co.cciiiiieeesiesie s st b et n et e e 10
Figure 3 SOR Language Dala SIIUCIUIES...........cciiirieieieriesieee ettt b e sse e nn e b s nne e 11
Figure 4 SQR with object Dased MOAUIAIITY.........cccviiiiieie e 12
FIQUre 5 ClassiC SQR IMBLIICS.......eiueiieiieeiieeiie e seestee st eteetesseesseesseesbeessesssesseeaseesbeesseaaseaseeaseesbeenseenseasseaseesseenseensennsennees

Figure 6 SeeSOft [EICK 1992].......ciii ittt ettt b e et e ese e e se e sbe e beeaaeeseeeseesae e seenteenteeneesre e seenseenseenee e

17

Figure 7 CharaCter VIEWS VEI'SUS PIXEl VIBWS........cc.oiiiieieiesesieeee ettt e sne s s 20
Figure 8 SQR 'Hello World' Character and PiIXEIS...........ooiiiiiiieeese e 25
Figure 9 Multiple SQRs visualized using First Prototype. 'Hello World' in list box.................... 27

Figure 10 Single SQR view with language line colouring and emphasis on full source code display. 28
Figure 11 Initial SQR VISUAIIZING OPLIONS.........ciuiiieitieiieeiesiesieesieesieseeseesee e e ssesssesseesseessesseassesseesseessessesssessenns 29
Figure 12 Traditional SOftware MELIiCS SCrEEN.........ccviii ettt sreenre e 30
Figure 13 Client application domain with 14 SQRs and 5000KLOCS..........cccciveiiereeiieiieieeseesie e see e 35
Figure 14 Client subset report suite [00King fOr OULHNENS.........ccooiiiiienieereses e 36

Figure 15 SQR With OULIINEr TUIT SCrEEN VIBW.......cc.eiuieieee ettt ee e 37
Figure 16 View of application SUDSEL DY SIZE...........ooiiiiiiec e 38
Figure 17 Call tree dependency view of an appliCatioN...........ccoceririririeeresese e 39

Figure 18 INCludes treated [1KE SQRS..........oiiiiieiieie ettt e e e s be e beetesneesseesseesbeebeensesneesseens 41
Figure 19 View using language line colouring and other line colouring.........cccceeeveeveeieniieenenne 42

Figure 20 Dashboard like effect using MDI forms and multiple VIEWS..........cccoccvvieiieneeiecce e, 43

Figure 21 Most popular visualization of large SQR application SUItE..........ccccceveeiieneeiie e, 44

file:///IC|/westmost/finalrpt/Copy%200f%20final.htm (4 of 56) [4/28/2003 2:34:09 PM]

WestMOST Proposal for “Project Course”

List of tables
Tahle 1 ViSUaliZEr REQUITEIMENES......cc.eiiiiiieeieeie sttt ete st e st et e e eesseesbe e beestesseesseesseeseesseaseesseesbeenseanseaneesseenseensn 23
Table 2 SMV INErfate EVAIUBLION.........ccoiiieiie ettt s se e s be et e e stesstesseesbeeseenseeneesneennes 45

EXECUTIVE SUMMARY

Thisreport and related research activity owes its inception to many people. Theideafor software
metrics in general was sparked by the first Westmost course delivered by Professor Paul Sorenson
[Sorenson1993] [Florac1999]. Professor Carl Gutwin gave the idea of using paper prototypes and end
user interface testing in his Westmost course [Gutwin1999]. Professor Ka Toth in his course provided
scoping and software design [Toth1996]. Dan Thornhill and Darrin Miller provided the industrial gist
for the research mill and the prompting for visualization [Brio2002] [Miller2002]. Finally Professor Ken
Wong showed immense patience and guidance with the author as he was performing and documenting
this research [Wong1996] [Wong1999].

This document covers research into using software metric visualization of SQR source code artifacts:
reports, includes and/or programs. SQR isawidely used commercial procedural programming
language.

A survey of the current state of source code visualizers was conducted mainly using the Internet. The
survey reviewed many current visualizers, and involved downloading and applying them to SOR
programs. The survey results are summarized in subsequent sections, however, there were not any
direct SQR visualizers. Indeed the time for source code visualization of procedural languages as
opposed to object-oriented seems to have passed. No visualizers that dealt with either SQR and/or RPG
could be located. It was as though developers of visualizers were not interested in commercial source
code other than COBOL or C. It was decided to build a visualizer as opposed to purchasing a visualizer
off the shelf. Asaresult, some preliminary visualization activities were conducted as well as
establishing concrete tasks for visualization users. These tasks resulted in high-level requirements for
building a visualizer.

SMV (SQR software metric visualizer) was built in prototype form. The first prototype was very
primitive, resulting in alimited view of key performance indicators for SQR developers. However, the
prototype showed promise and was redevel oped two more times until a suitable working version was
obtained. Thefirst prototype fleshed out the high-level requirements and prioritized them into a
collection of most useful visualizations.

By applying SMV to alarge commercial report suite, insightsinto SQR coding were obtained. These
insights also required further refinement of SMV by adding features such as a legend for colour coding
and SOQR specific language colour coding. Developer styles were clearly visible, as were software
change events that were not immediately obvious from source code inspection. Indeed, an evaluation of

file:///IC|/westmost/finalrpt/Copy%200f%20final.htm (5 of 56) [4/28/2003 2:34:09 PM]

WestMOST Proposal for “Project Course”

SMV was performed with an initial group of SQR developers whereas software development managers
performed evaluation of the SMV visualizations. These evaluations formed the basis for the research
conclusions and recommendations.

The main conclusions and recommendations of this research concern the SMV software tool and its
products. Software metric visualization should be applied to many commercia language based
applications. Thereisaneed for visualization in the management of intermediate to large commercial
software development and maintenance activities. SMV should likely be an add-in to development
environments and source code management tools. |If the activity cannot be measured then the activity
cannot be managed. Ease of presentation of software measuresis the core function of SMV.

The application of visualization in general, isalarge research area. A universally agreed classification
of thisresearch is needed. Thereisaproliferation of approaches and visualizersin thisarea. The use of
auser panel and/or initial investigation group seemed not to be a widely used approach to building
visualizers.

1. INTRODUCTION

This document is about software source line visualizers and software metric visualizations of SQR
programming. SQR isawidely used report writer language that is database and operating system
independent with strong SQL capabilities. The document covers asurvey of visualizers and also covers
research concerning one developed visualizer for SQR. Source line visualizers are popular where
measurements of thousands of lines of source code (KLOCS) are used as key productivity indicators
(KPIs) for software devel opers and management. Although KL OCs have been shown to not be a highly
reliable indicator of software productivity, the measurement still remains one of the easiest to obtain for
managing software development and maintenance. Problemsin KLOC concerning issues of ‘comment’
instructions and general language constructs can be mitigated using a visualizer.

This document is also provided in partial fulfillment of a Mastersin Science in software technology
from the University of Alberta. Asaresult the document covers: some objectives of doing research in
this area; the systematic methodology followed; what data was gathered; and the development of a
visualizer for SOR.

This section continues with the objectives of this research, the scope of the research, and the approach
taken. Finally the section concludes with some background on SQR.

file:///IC|/westmost/finalrpt/Copy%200f%20final.htm (6 of 56) [4/28/2003 2:34:09 PM]

WestMOST Proposal for “Project Course”

1.1 OBJECTIVES

The objectives of this research were as follows:

» toassist large SQR development projectsin the construction and maintenance of SOR

artifacts;
» to help software managersin assessing productivity of SQR developers and overall project
progress,

» to provide software engineers with an estimation tool for SQR artifact upgrades; and,
» to provide software managers with arapid snap shot of code status over a period of time.

These objectives essentially guided the research that was conducted.

1.2 SCOPE

It became apparent early in the research that visualizers of source code, have along history in computing
and are embedded in much of character based computing. Appendix F lists some of the search terms
used to browse the Internet and their related number of hits or citations. Visualizers are now being
applied to object-oriented source code. However, object-oriented source code visualization is concerned
more with characteristics of class structures than with the make up of an individual line of source code.
Line visualizers of source code are explored in detail in this study, since they tend to bridge between
character visualization and the more recent object-oriented visualizers. Visualizers that were hyperbolic
or used mapping techniques such as 3D, fisheye views or virtual reality were not explored in detail.
These visualizers did not lend themselves immediately to aline oriented procedural language such as
SQR. Further, although SQR readily produces output in HTML and XML, web-based visualizers were
not explored in detail. Finally not explored in detail were visualizers that captured class information
and/or object-oriented information. SQR is not an object-oriented language although it can have a
limited amount of class functionally. What was explored in detail was the application of line based
visualization techniques to SQR source code, and in particular to a suite of SQR programs running as a
defined application. Many additional SQR based applications were also researched. A visualizer
software prototype was built to perform multiple views that included information about author and
language constructs. There did not previously exist a visualizer that directly applied to the language
constructs of SQR.

1.3 APPROACH

file:///IC|/westmost/finalrpt/Copy%200f%20final.htm (7 of 56) [4/28/2003 2:34:09 PM]

WestMOST Proposal for “Project Course”

The approach to conducting the research consisted of the following:

e acurrent survey of SQR and of visualizers was completed;

« areview of software quality metricsasit is applied to SQR devel opment was compl eted,;
» thebuilding a SQR software metrics visualization tool was started;

» thebuilding of a prototype to measure the applicability of visualizersto SQR software
products was done;

» therefinement of the prototype and its application to a known SQR problem domain was
performed three times with end user evaluation; and,

» conclusions and recommendations to the further use of the visualization approaches were
stated.

In particular, a prototype was built and applied in alimited fashion to a collection of SQRs. This
prototype was then shown to an initial group of SQR developers and SQR software devel opment
managers. The prototype was then redesigned and applied to alarge suite of SQR programs. The
prototype was finally redesigned and applied to a'working' report suite of newly developed SOR
programs. An independent initial group viewing the results of the final prototype performed an end-user
evauation of the prototype.

1.4 BACKGROUND

To assist in understanding the need for an SQR visualizer, this section discusses SQR program and
language structure. Then a discussion of software source line visualizersin general isgiven. A brief
comment on revision control systems and their relationship to visualizersis made. SQR visualizers and
SOR metrics are then discussed.

SQR iswidely used in data warehouse applications. The language is also widely used in Peoplesoft,
SAP, and Oracle and other enterprise reporting packages (ERPs). Further, the language is also used for
report publishing to the Internet. The language is used to complete GAP s (requirements not being met
by features of a software system) in ERP implementations and to fit multiple applications together.
Typicaly, development in the language consists of “hierarchical input processing and output” waterfall
methodologies. [Willson2001]. SQR has structured programming language capabilities with lines of
code being a strong software metric. Code developed with SQR can be maintained and supported using
revision control software and standard defect reporting. The source code is usually collected into flat
ASCII fileson any given operating system. The SQR compiler and run time version are command line
driven on all platforms. SQR is also used to call other languages such as C, C++, Visual Basic, Delphi,
and others (or be called itself). SQR gets embedded or hidden in many applications because of its strong
reporting capability that provides reportsin most formats including Post Script, PDF, HTML, XML, line
printer, and HP. Although thereisagraphical user interface to recent Brio versions of SQR [Brio2002],

file:///IC|/westmost/finalrpt/Copy%200f%20final.htm (8 of 56) [4/28/2003 2:34:09 PM]

WestMOST Proposal for “Project Course”

SOR can be command line executed.

1.3.1 SQL to SQR

Begin-Program

Begin-Select

PRODUCT LINE,

PRODUCT NAME,

STORE NAME,

AMOUNT SALES,
Print &product line (+1.1)
Print &product name (0,40)
Primt &store name {0,+2.300

Primt &amount sales (0,+5) edit $55,$53.$93.99

From STORES

S4LES FACT

PRODUCTS
Hhere STORESSTORE ID =84ALES FACTSTORE ID
And SALES FACT.PRODUCT ID = PRODUCTS.PRODUCT ID
Order By PRODUCT LINE, PRODUCT NAME, STORE NAME
End-Select
End-Program

Figure 1 SQL to SQR Conversion or What's SQL and What's SQR

Figure 1 isfrom Nick Moscaritolo a Senior Systems Consultant of Brio Software and his presentation at
[Brio2002]. By inspection of the SQR program above it isvery easy to see SQR'sroots. Indeed, in
most cases SOR passes SQL directly through to the underlying database without modification. So a
very simple SQR program can have very few changes to that of SQL, but with left-hand column
alignment being significant to the compiler. This holds true for whatever underlying database the SQR
and/or SQL isacting upon. Infigure 1, note the use of 'Begin' before the words 'Program’ and 'Select'.
And notice the use of the word 'End' before 'Select’ and 'Program’. These words bracket and modularize
SQR. Additional '‘Begin/End' combinations for 'Procedure’ and other constructs are available. Inthe
following figure, figure 2, the SQR language flow is briefly described.

1.3.2 SQR Program Structure

file:///IC|/westmost/finalrpt/Copy%200f%20final.htm (9 of 56) [4/28/2003 2:34:09 PM]

WestMOST Proposal for “Project Course”

Creelace Includes
i i Block

| ofGlobals
Begin-Report i &Defines
| Begin- Program, Lo i

do MAIN

Begin-Setup | Begin-Select !

Begin-Procedure
MAIN

|:> do SUB_PROC

Begin-Frocedurs
SUB PROC

EEeg:in-Heaiing " Begin-SQL !
do ANOTHER_SUE ' | '
4

L N
procedura calls E Begin-Procedure
ANOTHER_SUB : i
external program calls S— ‘ !
2t | do MANY_MORE | Begin-Fuoting |

WAVAY.

COithers

optional procedores

e I Declare More . o ,I ! !

Includes

Figure 2 SQR Language Program Flow

In Figure 2, the flow of an SQR program is presented. It isimportant to note that sub routines are called
procedures and that a parameterized procedure creates local variables to that procedure. All other
variablesin SQR are global. Compiler instructions include ‘includes and 'defines. SQR also has
reserved words and directives for using a global reserved word within alocal procedure. A common
problem of using 'includes’ is creating variables that are unlikely to be named by a developer in order to
prevent variable collison. Modularization is completed using key word Begin/End pairing.

1.3.3 SQR Language Structure

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (10 of 56) [4/28/2003 2:34:09 PM]

WestMOST Proposal for “Project Course”

Staic Array based
Drata Sructures
/ SQER Vanzhles
0L Column datatypes i Dates, Images, Long
Strings
String Literals
and Reserved Words
S0R Data Elements
Document Embedded f
Chararcters r A
s
/ Y
S0R Vanables # Large Decimal Mumbers
Flozing Mumbers
Integess
Drates

Figure 3 SQR Language Data Structures

Figure 3 shows the data structures of earlier versions of SQR. An important missing data structure is the
class. However, pseudo class structures may be obtained through using ‘includes as the example
program below shows. In figure 4 following, an example of an abstract data type of a stack is shown.
This software and other software such as standard deviation are constructs that extend SQR as a
programming language and can be obtained from http://www.dsslitd.com/. Extension of the languageis
possible through user-defined functions and calls. The language itself iswritten in C; however, direct
access to the C pointersis not available to the SQR devel oper.

1.3.4 Object Based SQR Program

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (11 of 56) [4/28/2003 2:34:09 PM]

http://www.dssltd.com/

WestMOST Proposal for “Project Course”

SR PEOGE AN

fAnclde ‘stack mc

begin-setup
declare-variabla
integer#nurmber Fremainder
end-declare
end-setup

begin-report
do get_rurnber_baseil
do creste_stack
do print_bazel
end-rapart

begin-procedure gel_number_bazeil
show '‘Base 1010 base 2 Number Converter'
input Snumbase10 'Bnler bage 10 number
(max 4 digits) "type=miteger maxkn=4
end-procedurs

begin-procedure prnd_base?
ghiow " Murnber in Base 10 =" Snumbasel10
move Snumbazell to Snumber
while #number <=0
et #remainder = mod{#ghumber, 2}
do stack_push{Fremainder #depih)
let Frumber = frunc{#Fumber2 0)
end-whila
dizplay *Mumber in Baza 2 ="' naline
do stack_smply{#depth, #etack_amply)
wehiie not #stack_empty = 1

STACE IMCLUDE

begin-procedure creale slack
wdefine MY _ROWS 1000
creale- array name=stack sze={had RONWS]
fiel=j:numbar
| #depth - Stack depth
Iet #depth = 1
end- proceduns

begin-pracedure stack_arrpby[@depth, #siack_ermpty)
if #depth =0
led #ctack_empty =1
else
Iet #stack_empiy=0
end-if
end-procadurs

begin-procedure stack_push (#push, F#depth)
let stack jj#depth] = &ush
let #depth = #depth + 1

end-procedurs

begir-procedure stack_pop (#pop, Adepth)
Ied fpop = stack j(#depih)
Iet #depth =#depth - 1

@nd- procedung

do stack_pop(#remainder, #depth)
dizplay #remainder naline
do stack_emply(Fdepih, #=tack_smpty)
efid-whila
end-procedure

Figure 4 SQR with object based modularity

In figure 4 above alimited approach to object oriented programming is shown in a program that
converts base 10 integers to base 2 integers. Note that in the 'include’ on the right-hand side, thereisa
‘define' of maximum rows of 1000. In early versions of SQR memory was reserved through block
assignment. So even though SQR was under the wraps C language code, memory reservation for array
sizes were fixed and not dynamic. (No pointer accesses in SQR). Again note the blocking structure in
the above SQR. In thefollowing figure, figure 5, classic measurements of developer productivity in
coding or maintaining SQR programs is presented.

1.3.5 Classic SQR Metrics

For a given SQR program

Number of runs
Number of abends
Number of defects

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (12 of 56) [4/28/2003 2:34:09 PM]

WestMOST Proposal for “Project Course”

Number of support calls

For acollection of SOR
programs functioning as an
application suite

Number of lines of code

Number of lines of comments in the lines of
code

Number of individual SQR programs

Number of authors of the code

Number of revisions

Number of 'includes used

Number of dependencies or external program
calls

Maximum depth of dependency call tree

For a collection of
application suites
functioning as a system

Number of applications

Number of revision lines

Number of lines of comments

Figure 5 Classic SQR Metrics

Classic SQR metrics include counts of the number of lines of code (KLOCs), SQR abends, and defects.
Standard software engineering measurements and related statistical analysis may be performed on these

measurements.

After selecting an application in figure 5, the following classic measurements are provided for that

application:

» thetotal linesof codein all SQR artifactsin the application including the lines of code that are

contained in 'includes

» the number of SQR programs in the application and the number of includes;
» the number of authors with code in the application and the total number of revisions of lines of

code; and,

» the number of dependencies within the application consisting of the calls of SOR programsto
includes and includes of includes and the maximum depth of the longest path. Recursion is not

permitted in SQR and

and those lines that may be comments;

Isusually trapped at the compiler level.

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (13 of 56) [4/28/2003 2:34:09 PM]

WestMOST Proposal for “Project Course”

When metrics are gathered by connection to a production data base, additional statistics are provided
such as number of abends of an SQR, the number of times the SQR was run, the number of reported
defects of the SQR, and total number of support calls concerning agiven SQR

In figure 5 additional classic measurements are shown including system statistics concerning multiple
applications. Finally an ad hoc SQL report writer is provided to capture other counts that may be of
interest.

Some not-so-classic metrics missing from figure 5 include:

- Measurements of programming style of agiven developer including language construct (say
use of the move command rather than the let command);

- Measurements of productivity including lines of code in production produced per time interval
and/or number of other developers using an individual developer includes; and,

- Counts of component slices of agiven SQR for possible re-engineering of a SQR application
suite.

Work breakdown structures on a project that is mainly SQR development have task assignments. These
task assignments usually are 'include’ based and/or individual SQR based. There is some application or
vertical silo based tasking but this may be unusual.

2.0 CURRENT STATE SURVEY

In this section, a discussion of the methods applied to surveying the state of SQR and visualizersis
presented. The results of the survey are presented in summary form. Finally the recommendation to go
ahead with an SQR visualizer is made.

2.1 METHOD

The methodology followed included the following steps.

. Anenvironmental web scan using Google, Surf Saver and Bulls Eye was performed to ook for
visualizers.

. A review of web based user groups and key contacts including SQR-users and PeopleSoft fans
(rm-users@sgrug.org and/or sgr-users@sgrug.org) was compl eted.

. Attendance at the international Brio Software 2002 conference including the SQR developer forum
and meeting of several Brios personal was done.

. A review of selected publications of ACM and |EEE was compl eted.

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (14 of 56) [4/28/2003 2:34:09 PM]

mailto:rm-users@sqrug.org
mailto:sqr-users@sqrug.org

WestMOST Proposal for “Project Course”

. Contacting of selected vendors was completed.

Not all of the above steps were completed in performing the current state survey.

2.1.1 Data Gathering

Datafor the research was gathered in many ways. Thisincluded personal interviews, questionnaires,
inspection of other visualizers and metric capturing software, and regular communications.

. Inparticular, Darrin Miller [Miller2002] provided his SQR software metrics used for managing
SOR report suite development. Darrin Miller also provided SQR defect tracking software. This
software was written in SOR itself.

. Selected software metric visualizers such as Brio Metric 7 were acquired and applied to SQR
visualization.

. Finaly the relationship to revision control systems and software control systems was explored.
None of the standard revision control systems were using visualization at thistime (PVCS,
Rational, SourceSafe, MKS, ...)

2.1.2 Web Scan

In performing the environmental survey scan, the web was used extensively. Standard search engines
were used along with some specialized search tools for finding visualizers.

» For alist of standard search engines used, see the Appendix.
* Additional search engine approaches included:
- SurfSave which allows the saving of a complete web site;

- BullsEye which posts to multiple search engines concurrently and ranks the

retrieved information; and
- Internet Cartographer which clusters web sites around statistics of interest

such as key words.

Search terms included one or more combinations of the following terms:

e visuaize
SOR
SQL

software metrics

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (15 of 56) [4/28/2003 2:34:09 PM]

http://www.surfsaver.com/
http://www.intelliseek.com/
http://www.inventix.com/

WestMOST Proposal for “Project Course”

software key performance indicators
lexical parsers

lexical analyzers

visualizers

Although thisis not an exhaustive list of search terms, it resulted in a clustering of concepts concerning
SOR visualizers. This clustering defined some of the concepts used in the prototypes.

2.2 SURVEY RESULTS SUMMARY

Through the data gathering and web scanning considerable information was gathered concerning
software metric visualization and SQR. Thisinformation and some speculation are provided in the
following paragraphs. These comments are meant to show the range of visualization possible and the
myriad of approaches that could be used in the development of a prototype.

2.2.1 Software Source Line Visualizers

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (16 of 56) [4/28/2003 2:34:09 PM]

WestMOST Proposal for “Project Course”

=8 Example Seesoft

=

B S e T e
A m‘ Hﬂ TR TR e v] oo e e L B Py =)

Fils btativtice Yiny Wytiscr Ualp

Gal T W
[Hn'*i'-‘-'mmmwrnf-.ﬁ‘

e

il

HPIIE

]
T
=
ta

Figure 6 Seesoft [Eick 1992]

Software source line visualizers have a decade long history of exploration starting mainly with
[Eick1992]. In Seesoft one sees a visualizer applied to C source code for alarge devel opment and
maintenance project. The capturing of source lines of codeis at the pixel level with one character of a
source line' s attributes being mapped to one pixel on a screen’s attributes. This resultsin the retention
of some characteristics of source code mapping directly to aview of the code and the removal of other
characteristics. Asaresult agranularity of information about source lines of codeis obtained. To span
multiple levels of granularity Seesoft provides both a visual view and adrill down using a popup
window that shows the original source code. [Knight2000] in her System and Software Visualizations
provides many examples of visualizers that have been devel oped since Seesoft. [Eick1996] provides
examples of the application of the visualization technique to other kinds of system development
deliverables including data bases, operating systems, and data structures. Current visualization
approaches such as [Tan1999], [Qsm2002], and [Swanson2001] provide visualization of object-oriented
languages such as Java and C++. C++ hasahistory of being studied in detail including [Kuh1994].
Many visualizers now exist in both the ‘ shareware’ and commercial domains. Current visualizers are
now concentrating on the visualization of language structures of object-oriented languages. In
[Emden2002] jCosmo — Java Code Smell Browser Tool is presented that 1ooks not only for language
structures but also at developer approaches to using those constructs.

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (17 of 56) [4/28/2003 2:34:09 PM]

WestMOST Proposal for “Project Course”

2.2.2 Revision Control Systems

One of the curious non-events in commercial revision control systemsisthe lack of adoption of
visualizers and visualization techniques for code control and management. Even more curiousis that
software quality and metrics seem to go together and revision control systems track many of the metrics
necessary to increase software quality. [Booch2002] discusses software quality and the Unified
Modeling Language but the Rational Software Corporation has not offered a visualizer for metrics as of
November 2002.

2.2.3 SOR Visualizers

Although there are many visualizers that cover most of the standard and legacy languagesincluding: C,
C++, Java, Lisp, FORTRAN, COBOL, etc, some languages have not had visualizers applied to them.

In particular, there are no visualizers for many of the widely used commercial languages such as RPG
and SQR. Thesetwo legacy languages are still in wide use and still growing in the number of advocates
and uses. It ismuch like the growth of radio after the widespread use of television. Radio continued to
proliferate; however, at areduced rate compared to the growth of television. So many legacy languages
continue to grow but not at the rate of the object-oriented or class languages. SQR isjust such a
language. It continuesto grow from itsinitial codification in [Burton1994] through [Mellen1998] and
[Landres1999] to [Miller2002].

There are alimited number of software metrics that get applied to SQR development. These metrics are
not visual and usually software managers reviewing development activitiesrely on table driven data. In
large SQR development efforts there islittle overview effort assessment other than the number of
modules completed or the number of reports completed. See [Willson2001] for SQR development
approaches and see [Dask1992] for software metricsin amajor client of this document’ s research.
Visualizing team member effort across modules or programsis not possible. Visualizing quality and
amount of code developed is not presently available. In effect the measure of SQR software processes
has been restricted to table driven data and that data’ s interpretation.

2.2.4 SQR Metrics

Software metrics for SQR deal with the measurement of the software products produced and with the
process by which these products were developed. The visualizations of these measurements would deal
with the representation of these metricsin a graphical form. [Dumkel999] provides an overview of
metric tools. [Wong1996] providesinsight into how language constructs in program understanding

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (18 of 56) [4/28/2003 2:34:09 PM]

WestMOST Proposal for “Project Course”

could be used as atechnique for visualization. Much of theinitial research in SQR was acquired while
doing computer consulting [Willson1998].

2.2.5 History of SQL Analyzers, Lexical Analyzers, Parsers, and Visualizers

Although there are many citations of SQL analyzers, lexical analyzers, and parsers, as shownin
Appendix F, there are not alarge number of visualizers that complement the analyzers and parsers.
Considerable efforts have been made at a meta-level of visualization. 1n[Sgi2002] SGI provides
Mindset that performs visualization for datamining. Thisvisualization is very broad and complete, and
runs on a strong graphics display. Competing products include [Genvis2002], [Dbminer2002], and
Ghost Miner. Mention should also be made of KLOCWORK at http://www.klocwork.com; and, the
product suite here covers many different kinds of insight into general software metrics. All these
visualizers work at the SQL data base level and could have applicability to SQR visualization.
However, these visualizers would have to be tuned for SQR language visualization as they are currently
tuned to treating pure data. They would also have to be tuned to individual author issues.

2.2.6 SQR IDEs

There are many SQR integrated devel opment environments that could provide SQR visualization.
However at thistime the following IDEs are concerned only with the character representation of SQR.
Hence they leave the visualization to revision control systems and as we have seen current revision
control systems do not perform visualizations. Also at thistime, ERPs are not performing visualizations
either.

Seein particular:

* SQR/ Brio Report Builder http://www.brio.com/

* SOQR Runner http://www.sgr-runner.de/

e SOR Plus http://www.sgrtools.com/

* SQR Workbench http://www.nau.edu/

2.2.7 Selected Visualizers

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (19 of 56) [4/28/2003 2:34:09 PM]

http://www.klocwork.com/
http://www.brio.com/
http://www.sqrtools.com/
http://www.nau.edu/

WestMOST Proposal for “Project Course”

The current closest visualizer for SQR directly is SQR Tree (http://www.kagi.com/) written by Wayne

Ivory. However, SQR Tree only provides acall or dependency tree of procedures. It isautility that
shows atree structure of the procedural and 'include’ files of a given SQR program.

2.3 SMV REQUIREMENTS

Asaresult of the current state survey, it is apparent that there is not an SQR metric visualizer that is
readily available. It isalso apparent that visualization could be useful to this programming language as
it has been to other languages. So what kind of visualizer isrequired? Before specifying an SQR
visualizer, consider the level of granularity that a visualizer should work at. Programmers tend to work
at the code level of granularity. So how about using visualization on a single SQR program?

2.3.1 Character Views versus Visualization

'| R

g

Figure 7 Character views versus Pixel views

In Figure 7, a character view and a visualization view of the same two SQR programsis presented. This
is an example of one kind of single visualizer. From inspection, the character view is the better heuristic
when looking for change events between the two SQR programs. Programmerstypically ook for
change events from one program, one system, one version or package to another. Comparing two SQR
programs in some form of graphical approach is better done with character display comparisons.

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (20 of 56) [4/28/2003 2:34:10 PM]

http://www.kagi.com/

WestMOST Proposal for “Project Course”

The use of SQR visualization then becomes a matter of what level of granularity isrequired. For an
SQR developer, character based visualization may be all that isrequired. For ateam leader and/or
software development manager a higher level of visualization may be required. Asaresult the next
section deals with SQR software metric visualization research. However, before describing the research,
the following possible tasks of an SQR visualizer and their prioritized requirements are listed from
discussions with SQR community.

2.3.2 Concrete Task Examplesof Visualizer Users

The following task examples are gathered from interviews concerning usage of an SQR visualizer. For
acopy of the interview questionnaire please see the appendix.

2.3.2.1 Task Example 1:

An SQR developer has written 100 KLOCs in 12 SQRs for alarge hospital over 2 years. He haswritten
these SQRs using 'includes’ that he personally developed and/or cloned from experience with multiple
ERPs. He has not worked on the hospital system for over sixteen months when he is called to come back
and make modifications to his production SQRs.

2.3.2.2 Task Example 2:

A project lead for alarge computer vendor maintains SQRs remotely throughout North America. His
background includes being an Oracle DBA and a DB2 DBA for over 10 years. Hetypically hasfrom 3
to 10 SQR developers doing maintenance activities for him. He does not necessarily know the state of
the SQRs when his organization sells the maintenance service. One annual routine activity of his SQR
crew isto upgrade his maintenance customersto the latest version of their database, their ERP, and

SQR.

2.3.2.3 Task Example 3:

A delivery manager for a SQR software boutique converts customers to SQR that have reports written in
Crystal, Envision, SQL Plus, PL/SQL, and other database query languages. Typically the delivery
manager gets called in to do the conversions when the other report writers do not scale to enterprise
level reports and/or do not scale to the Web. Sometimes the scalability is not just a performance issue of
end-user response times but one of multi-language requirements or cultural needs.

2.3.2.4 Task Example 4:

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (21 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

A freelance SQR consultant gets called in to make an SQR product suite more efficient. The report suite
delivers its production reports but the organization has grown rapidly and the reports are becoming less
timely. Newly trained SQR devel opers who did not take advantage of the many capabilities of SQR
wrote the original reports. In particular, the use of in memory arrays, 'load-lookup tables, as opposed to
database retrieval is not done.

2.3.2.5 Task Example 5:

A delivery manager for Brio professional services gets tasked with rapidly creating financial reports for
adatawarehouse that is being fed data from a newly installed ERP system with limited web reporting
capability. The timeframe for implementation is 4 months and the number of SQR developersis44in 3
global locations. A report suite approach is required using a systematic methodology; however,
enforcing of SQR development standards would elongate the 4 months so individual developers adopt
their own programming style to complete their individual SQR assignments.

2.3.3 Tentative List of Requirements

The previous task examples resulted in the creation of the following table. The tableis prioritized. The
ranking scale is the author's. (Note that the column entitled scale has the following legend: a- must, b -
should, ¢ - could, d - exclude. E.g. the column isthen read as 'the requirement must be met by the
visualizer'.) Asaresult of discussionswith theinitial end user group, the requirements were separated
into aprioritized list. Thislist became the objectives for the SQR software metric visualizer.

Table 1 Visualizer Requirements

[Requirement ScaleRationale
al (Capture raw' statistics of code a (Corefunctionality of avisualizer.
productivity Presentation of these statisticsis not
necessary if they can be viewed
appropriately.

a2 |Drill down on visualized abnormalities| a [Provides away of viewing the source
code to inspect whether an
abnormality isreal or imagined

a3 |Selectable targets of visudization a [Provides away of selectively
including author, variables, language visualizing.
constructs, words

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (22 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

@4 |View change events consisting of Core operation of avisualizer. It
change of author, code modification, major change events can not be
other viewed then you do not have a
visualizer.
bl (Capture significant views for Provides away of using visualization
presentation and discussion for human resource issues and/or
mai ntenance i ssues.
b2 |Easily retrieve SQRsfor visualization Provides away of importing SQRs
for visualization
b3 |Highlight abnormal change events Provides an automated way of
viewing change events
b4 |Interface to version control software Provides an easy way of capturing
such as PVCS, MKS, Rational, other change events of interest.
b5 [Provide ad hoc reporting of statistics Provides away of retrieving statistics
not just pre canned statistics of interest by passing out-of-the-box
visualizations. Allowsfor more
custom visualizations.
b6 |Provide feedback on the visualizer Assists avisualization user to make
Operation appropriate use of the visualizer.
b7 |Provide rapid learning of visualizations A SSIStS in Movi ng up the |eaming
including legend and titling curve faster.
b8 |Provide snap shot capability for before Provides away of measuring changes
and after timed views in terms of percentages at a
macroscopic level.
b9 |Set colour codes for author, for Provides away of distinguishing
language construct, for variable statistics of interest in avisual form.
b10 [View awhole SQR application not just Provides away of managing
aprogram application report suites
bll |View programmer language style Provides away of viewing particular
developers way of using the language.
cl |Export visualizationsto other office Provides away of enhancing the
productivity tools such as Visio, Word, visualization.
other
c2 |Interface to developer tools such as Provides an easy way of making
TextPad, Brio Report Builder, other changes after viewing a change
event.
c3 |Providethinclient for visualization to Provides away of managing SQR
the web development in multiple geographic
locations.
c4 (Setlevel of view such as an elevation Provides for scalability of view.

ascend/descend

Results in settable levels of

granularity.

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (23 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

c5 |View consistency of programmer style | ¢ |Provides away of viewing language
style independent of kind of language
construct.
c6 View history of visualizations ¢ |Provides away of making routine a
including archiving of significant series of visualizations say from year
visualizations
to year.
dl |Convert visualizationsinto statisticsor | d |Provides another media for
statistics into visualizations understanding underlining change
events.

The above table of requirements was high level and was refined through out the development of the
prototypes of the visualizer. However, the table did provide a starting point for development and a
measure as to progress of the development.

3.0 SOR SOFTWARE METRIC VISUALIZATION RESEARCH

This section deals with SQR software metric visualization research. In particular the methods that were
followed isdiscussed. Also discussed is how SQR development and maintenance could be improved
using visualization. This section also coversthefirst prototype of an SQR visualizer and describes it as
asoftware tool. Finally the section discusses recommendations for SQR visualizer use and the first
redesign of the visualizer.

3.1 METHOD

B Progiammer's File E ditor

. icon =10l x| Fle Edi Optons Jemplste Exscute Macro Window H

LLDHEHE- L es] [XIN | &) |5 E

F
[[! This program simply prints a Hello.

' It does not need database connection.
!

= beqgin-report
do main
end-report

beqin-procedurs main
print "Hellett' (1,1} T
end-procedure

| | af

4
[ln7 Cald AT WA [Rec Of (No'Wiap [D0S NS |t

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (24 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

Figure 8 SQR 'Hello World' Character and Pixels

Figure 8 above shows a character example of an SQR program entitled 'Hello World' and a visualization
of 'Hello World' in pixel tranglation. The theory behind an SQR visualizer is shown in thisfigure. Take
agiven line of SQR code and convert the line into pixels. The characteristics of the line that are of
interest are mapped to the characteristics of a screen's pixel. This enables up to 50 KLOCsto be
visualized on asingle screen. SQR programs range in line count from very small such as'Hello World'
to 10 KLOC as per avery large program. The colour attribute of the pixel is assigned depending upon
the statistic of interest such as latest row changes, age of arow, author of arow, type of code,
dependency on other rows, language construct, etc. So the same information graphically presented
allows compression of information on the screen. This compression can bein many forms. The
compression shown is one pixel for one character of information. Both are presented on single line.
However, twipsin the Windows world would allow up to 20 characters per pixel. So many different
variations on the character/pixel relationship are possible. In research avariety of these variations were
tried with varying success. The line representation seemed the most intuitive; however, other
representations were possible and tried. In particular, the hyperbolic and fish eye representations were
coded to the first prototype stage; but they did not seem to have the insights that a line representation
held as the transition from the code to the view seemed to require more 'thinking' on the part of the end
user.

3.2 PROCESS IMPROVEMENT

As aresult of viewing lines of pixelsin place of lines of code certain patterns are discernable. In
particular, where SQR program size is large or when many programs have to be viewed concurrently in
order to track say avariable across an application suite, visualization is a good approach. It isnot better
than say using 'grep' in the Unix world or 'find' in the Windows world; however, it is better when
viewing a certain author' s code contribution or latest changes. So the process improvement is possible
in many ways. These ways include development across multiple developers of large program suites
and/or the maintenance of SQR in large program suites.

3.3 FIRST PROTOTYPE

Figure 8 above is an example from the first prototype of the SQR software metric visualizer (SMV). In
figure 9 below one of itsfirst applicationsis shown.

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (25 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

., Software Melno Visualizaton - [SOL o Visualiee]

B Bl Ech iew LoadProgiams Visusize Prelereces Window Help =18 =]
D@ & $[wief s|rlo] =|=|5|
J== | -'—Pk = BE =
EE f._ =l
o = = - =
| Thiz program sinply priote 2 Hal = F = = ==
I It does reot need databaze cone E = o= E =
! EE s EE
begirrrapor =
st —
L =
end-proced.es = e
= EE—
=
= -
- w— i
= E
E
E e
==
[Statas ez (337 AM @

Figure 9 Multiple SQRs visualized using First Prototype. 'Hello World' in list box.

Visualizing without colour coding for either author origination and/or language line construct makes for
lack of clarity. Note however, that some language constructs remain visible in the above figure and that
there isindentation like the original code. So one starts looking for patterns of styles. It became very
clear in thefirst prototype that a pop-up or list box of code being visualized would be anecessity. Asa
result SMV allows clicking on a pixel in order to show the line under inspection in context of the
program listed in the list box. Thefirst prototype had several shortcomings asis shown in the following
figure 10.

file:///C|/westmost/finalrpt/Copy%200f%20final.htm (26 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

5 Soltware Melric Visualzaton - [Smgle Program Visualizing]

B Fle Ed Miew LoadProgiams Visusice Prelersnces Window Help =] x|
D@ & @ 87| ===

%
L]

I TR T T |

(6152 CREFTY] -

]
&
E

Figure 10 Single SQR view with language line colouring and emphasis on full source code display.

In figure 10 asingle SOQR is visualized with language line colouring that matches the colour of the
source code shown againin alist box. Thislanguage colouring enables some code inspection. For
example, linesthat are 'comments in SQR could be ignored or filtered out depending upon their colour.
Indeed, in the following figure, figure 11, a collection of filters and options are shown. These options
increased as the prototypes were refined and became an interesting part of the research.

3.4 SOFTWARE TOOLS

3.4.1 Display options

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (27 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

moptions |
 Group T
— Samphe 1

* Colowed by Line Tupa
¢ Colowed by Author LOC ordy
™ Colowed by duthor Sl fnes

—S0R Displaying
[~ Comments Inor Out
I Collapse Select Staternants
[T Procedure Cals Highlighted

oK Cancsl &pply

Figure 11 Initial SQR visualizing options.

Figure 11 shows many of theinitial options of the SMV. Line colouring by type of SOR lineis

settable. Also settable are individual author's colours. This allows for the tracking of language
constructs across an application suite and the contribution of an individual author to an application

suite. Variations of these colours occurred in later prototypes including using the first 5 pixels of aline
for author colouring independent of the colouring for the line'stype. In addition filters were allowed.
These filtersincluded the removal of ‘comments’ for both visualization and classic statistical counts.
The 'select’ statement which is amajor component of most SQR programs was also allowed to be
filtered in or out. The 'select’ statement was still identified; however, only the 'begin/end’ were shown in
pixel form allowing the visualization of language constructs independent of the underlying SQL used.
Finally 'procedural’ calls and 'includes could be highlighted and shown as useful.

3.4.2 Traditional Software Metrics Screen

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (28 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

. Software Metric Visualization

File Edit “iew Load Programs Preferences Wisualize indow Help
D= H & & @@ 8|7 ===

=¥ Traditional Metrics

—_—

Application Statistics SQR Staistics

of Runs # of Abends
Hof SOR= # of Includes # of Support Callz # of Defects

Lines of Code # Linez of Comments

of &uthors # of Revizions

of Dependencies bl ax Depth

=

System Statistics

Ad Hoc Statistics/
SQL

Figure 12 Traditional Software Metrics Screen

Figure 12 above shows the trand ation of traditional software metrics into the first prototypes statistical
screen. Note that an experienced SQR user would know SQL quite well and as a result would be able to
perform their own ad hoc statistical queries on the underlying SQR code.

3.5 RECOMMENDATIONS FOR APPLICATION

The first prototype showed promise for visualizing SQR software metrics. However, the prototype
required much refinement and redesign.

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (29 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

3.5.1 First Redesign

The first redesign resulted in the specification of the kinds of visualizations possible. Although the use
of character/pixel conversion with appropriate colouring resulted in a useful visualizer, it was very
painful to remember the number of settings to achieve a particular visualization. These settings required
constant tinkering and the understanding of the code of an SQR application suite was being replaced
with the remembering of the tinkering of the visualizer. Asaresult, a selection of visualizations was
fixed and the backend of the visualizer went from reading flat files to putting the flat filesinto a
relational database. The use of arelational database was a magjor design decision; however, considering
that SQR usually performs against such a database it makes sense to use the database available. (Note
'star' database structures are also becoming common with the magnitude of the amount of data retrieved
in large systems becoming substantial. Indeed in the case of UDB - IBM's enhanced DB2, the
recommended report writer is SQR)

3.5.2 Selected Fixed Visualizations

The selected fixed visualizations were:

* Classic measurements. These measurements became SQL counts on the lines of codein a
given system, in a given application suite, and in agiven program. In addition, ad hoc SQL access
was provided for those who wanted additional unspecified counts. Thus meeting requirements al
and b5.

e Multi-program visualizations. These visualizations became the basis for comparing a complete
application suite and represented the silos (or column like listing) of programs that were shown in
the Seesoft image. The multi-program visualizations allowed the tracking of common language
constructs, authors, and statistics of interest viewed across the application suite. Thus meeting
requirements a3, a4, and bl.

* Single program drill-downs. This visualization alowed drilling down into a given program
fundamentals. Thiswas the lowest level of granularity of the SMV but still provided interesting
Insights into the large application suite subsequently viewed. Thus meeting requirements a2 and
b2.

* Application sizing inspection. Although this visualization was the simplest in terms of view
since it could have been done with any manner of office productivity suite software such as Excel
or Lotus 123, this view provided an overview for subsequent drill down or visualization and
became very popular with the user testers. Thus meeting requirements b10 and b3.

» Application dependencies. Thisview was of the procedural calls of the application suite and in
particular the callsto other 'includes. Thiswas arecursive view of the application with many
'includes’ including other 'includes. Thus meeting bl and b8 requirements.

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (30 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

* Language dependencies. This became the classic view of the first prototype and all subsequent
prototypes used thisview as abasis. It isone of the reasons why SMV had to be built as opposed
to buy. Many commercia off-the-shelf visualizers could handle devel oper languages but had not
developed filters for commercia languages such as SQR and/or RPG. The language filtering
became the first visualization that new SMV users looked for. Thus meeting requirements a3, a4,
b7, b8, b9, and b11.

* Author dependencies. Since software metrics was one of the driving forces for doing the
research, author dependency views were critical to filter out the 'ectoplasm' white noise of
individual author contribution to alarge program suite. Thus meeting a4 and b9 requirements.

There were other issues in the redesign of SMV; however, these visualizations became the driving force
for the next prototypes.

4.0 APPLICATION OF PROCESS AND TOOLS

This section describes the application of SMV to alarge SOR application suite. The SQRs used in the
examplesin this section are all in production and are now in maintenance mode. They total over 100
KLOCs developed by over 22 programmers over 6 months. These SQRs are based upon the report suite
'includes’ of Darrin Miller [Miller2002] and the author. These SQRs were built from September 2000 to
January 2001 and are a subset of Task Example 5.

4.1 METHOD

All prototypes were built in Visual Basic with ODBC to a SQL database for source line retrieval. SMV
will likely be rewritten in Javawith JDBC or rewritten in Visual Basic .Net. The rewriting will allow
the SMV to become a plug-in to other tools. However, this rewrite has some problems associated with
it. Namely, the display of information in the Windows environment is at the twips level of granularity
(20 twipsto the pixel) whereas most Java only addresses to the pixel level. Asaresult the rewrite will
likely have to be in vector line graphics bypassing the character to pixel conversion and going directly to
the character to line conversion.

The second and third prototype outputs are presented in the following figures. The third prototype was
givento ainitial group of SQR developers and their managers for validation of the human computer
interface.

4.2 DOMAIN DESCRIPTION

The application report suite consisted of cost centre accounting and profit centre accounting reports for a
large telecommunications manufacturer. The management problem consisted of managing the rapid
development of the report suite and then subsequently maintaining the report suite. The manufacturer
hired Brio professional services to manage the overall development. SMV was applied to the report

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (31 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

suitein two stages. Thefirst consisted of visualizations on the SQRs as created and placed into

WestMOST Proposal for “Project Course”

4.4 SOFTWARE TOOL RESULTS

4.4.1 L arge application suite view.

In figure 13 the client application consisting of both cost centre accounts (CCA) and profit centre
accounts (PCA) is shown. Thisview was provided by the first prototype and with out colour coding for
either lines of code type or for author origination, the view lacks clarity. However, some structure of the
codeisvisible including indentation like the original source code. Figure 14 following provides the
second prototype view of CCA including only line type colouring.

4.4.2 An example abnor mality

file:///C|/westmost/finalrpt/Copy%200f%20final.htm (33 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

D] S| tlnied wisle] elwie

Report suite with
language colouring.

Note abnormmnality.

1] H (YT g 1

s
=

B
=_
=
= &1
= =i
E__
_—

1 |‘I | ||q| IT."I'

Figure 14 Client subset report suite looking for outliners

Figure 14 above shows the advantages of line type colouring. In this visualization the dependency
colour shows that there are 'includes in one SQR, CCAG, at a program location that none of the other
SQRsin the report suite have. So why has the developer for CCAG6 got hisincludes different than the
others? In order to answer that question, consider figure 15 drilling down on the SQR CCA6 below.

4.4.3 An outliner in context.

file:///C|/westmost/finalrpt/Copy%200f%20final.htm (34 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

Figure 15 SQR with outliner full screen view

By viewing all of SQR CCA6 the SMV user can see where the 'includes are used in this SQR. By
viewing the list box, jumping to the code before the abnormality and noting the number of defines
before the 'includes' the user can see what is different for this developer. This developer’s styleisto use
‘defines’ for local/global variable control rather than take the defaults provided by SQR or the ‘includes.
In actuality this developer programmed some of the 'includes’ used by the other developers and his
variables were more likely to collide with those of the 'includes during debugging of the ‘includes.

However, by visualizing this program code, there also emerges an interesting pattern. This pattern is of
similar language constructs. Indeed, this program uses thirteen monthly 'select’ constructs rather than
one construct called thirteen times.

This may require a meeting with the developer. Should the developer use thirteen '‘Begin-Selects or one
that gets called with variable parameters.

4.4.4 Another kind of application suite overview.

file:///C|/westmost/finalrpt/Copy%200f%20final.htm (35 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

o e B Py

N

Whyis CCAS s% E’nﬂgg

simalier than

Figure 16 View of application subset by size

CCAS5 isway smaller than CCAG6. Thisis because when CCAS5 isreviewed there is one '‘Begin-Select’
called multiple times as opposed to thirteen in line 'Begin-Selects of CCA6. Hence the differencesin
program size. It becomes a testable hypothesis which SQR program approach is better. It turns out that
CCAG6 is slower since the database is called and dropped thirteen times where as CCA5 has only one
database connection that is called many times but dropped once. CCAG6 is easier to maintain when
program or underlining data bugs are found as a given month will be out whereas CCA5 might require
advanced debugging to find out why a particular month is out. Similar analysis is possible with respect
to the underlying data used in each SOR.

4.4.5 The application suite call tree view.

file:///C|/westmost/finalrpt/Copy%200f%20final.htm (36 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

+. Software Metric Yisualization

File Edit Wiew LoadPrograms Preferences Visualize Window Help
DE & & = 8|lz|u =|=[5|
—i0/x]

Program - PS_AR
=1 Ar30007
IPS"‘&'H :I [setenv.sqc
' - Opsys.sqe
: rdbms. sqc
= setupl2.sgc
oo setupl2asqe

= Ar30002
: - curdttim, sqe
o datetime. sqe
- gar30002.sqc
oo PICSEPIL SO0
- presdef. sqc
oo resel sqc
=l setenv.sqc
' Lo DPSYS.SOC
- L rdbms. sqc
= setup02 sqc
| o setup02a.sqc
- trancti zqc
= Ar30003
i e cUrdttin $gc
- datetime. sqc
- gar30003.sqc
- getselct sqo
prcsapl.sqc
- presdef.sqe
resel :qc
= setenv.sqec

Figure 17 Call tree dependency view of an application

In figure 17 above, the report suite has been changed to Peoplesoft's accounts receivable because the
depth of the call dependency tree of CCA was only one. However, the depth in this case shown is 3 and
In some Peopl esoft report suites has been measured at seven! Hence changing one SQR may involve
reviewing that change across many includes and/or other SQRs within the call tree.. The call tree
provides arapid view of this change. From this dependency view it is apparent how important 'includes
can be to view change events. Although thisview isnot aline-oriented view like the previous
visualizations, it isan important view. Itisthefirst of adlice type approach to visualization. (Slicetype

file:///C|/westmost/finalrpt/Copy%200f%20final.htm (37 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

views are visualizations that cross the application suite. Another slice type view might be security if it
was implemented in the application suite. Many non-functional requirements can become slices.) In
this view some of the components of SQR are visualized as they interrelate to other components. Many
additional type slices are possible but thisfirst dlice view was chosen because the dependency view
provides immediate information that is usually required. Inthe following figure, 'includes themselves
can be treated as other SQRs.

4.4.6 Includes can be visualized as SQRs.

+ Saftware Metric Vissalization - [Application Visualizathon]

M- Fie Edt Wew LoasdFrograms Prefererces Yisuslze Window Help - B X
DE & & @e oz ===
Apphcabon bsehup corvemal delne emiail tdeline Fsgr func huncs man paims %u
ot | e e . m — == =t .

T EI&” g o T | Ciiestmost|finalpt 4 Sofbears Matic Visua, .

Figure 18 Includes treated like SQRs

In figure 18, 'includes’ are visualized as though they are SQRs. Thisis natural when viewing the call
tree of dependencies. Indeed, software developers create their own standard for the identification of
'includes. The extension for SQR is SQR; however, the extension for includes can be any of the
following: 'inc, 'sgc’, or 'sgr'. Since'includes are really compiler directives they may be have any
extension including 'no extension'. It isonly by convention that one extension is used over another. In
the figure above, note that the source code of the 'include’ does not have to be proceduralized. Although
from inspection it is obvious that the ‘function include' has numerous functions that would be in the form
of procedures. However, the 'fsdefine include' does not have any procedures. It isan ‘include’ of
nothing but financial system definitions and 'defines. A call tree of 'includes could be built that has as

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (38 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

its starting trunk a collection of 'includes instead of a collection of SQRs. Considerable feature
functionality in an SQR report suite can be developed using 'includes.

4.4.7 Developers individual lines are viewed.

R Tl P ——
B e [e eifoper Sdewoe Vs S e alfh=

D] & xlsje| sirio] ===

T

Ly Sl (R

Figure 19 View using language line colouring and other line colouring

Thisis an accounts receivable SQR that has been modified by another developer. First note where the
'includes are in this SQR because of the colour coding of the language constructs. Second note that there
is author colouring. The colouring of original author in the first five pixels has been added as a result
feedback. (In alater prototype, this visualization contains alegend of authors with their colours and
language constructs with their colours.) Note the single line of code changed. It is coloured different
and different colour filters could be applied. Going to thisline of code in the code Pop up window
shows that thislineis setting the title of the new SQR and is not abig concern. However, it might never
have been noticed if atextual view of 4000 lines of code were required to be read.

4.4.8 The development manager's dashboard.

file:///C|/westmost/finalrpt/Copy%200f%20final.htm (39 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

o Software Metnic Visualization _|gi3ﬂ
ﬁh EdR View memq.—ans Praferencau'. Viusiee 'A-'mdm I-leh:-

) E
Ix

fin_be=gin_setup.inc
fir_fiba_coeveeesion_and_emailin
fin_fsdefine inc

fi_FeorQ0T. e

T
iR !F;' |||||= i

o e b hwskaaries, 0 — T
- [T i T «*
i a el o - g * :- i -._ e
| i BB =" L " — B This module i 1he con i —'— :_:._ i g
l. ! .. P '.': -
.n‘-'-ppi[:a:rm P ceal coad crad ccal
F— &] mEpap
by
¥ weze the follawsng command d E-_
I MmasinG PRINTERHT # R i
! [m'-:l.auhetls.-llfalmellcl'L = E ST —
,TH cfule it , g o .
5 T e L | s |'_|'|r||E|‘f'|: ————— A s iae i e ——— A
! M ctonoba; it is nob b b cook [L R
| i arw Iem, by srie mesns, @ T =
Thabiys Gizay00: 11116 &M

Figure 20 Dashboard like effect using MDI forms and multiple views

Figure 19 is dashboard like because it shows the state of the software with ‘dashboard'’ like features.
Although real time updates of the dashboard are possible since the source codeisin a SQL database
server with triggers on the server change events, usually this kind of real time update is not needed for
small to intermediate development projects. However, it would be interesting to experiment when
managing say 10 or more developers working concurrently on alarge scale development to view overal
progress and project contribution through using a dashboard. The dashboard could provide for
Inspection of source code change events with drill down and with KPIs of individual developer
performance.

Dashboards for a software development manager of SQR projects could consist of multiple concurrent
views of developer activities. The viewswould be drillable to the level of manager interest and would
have proposed indicators for amanager'sreview. Thered, yellow, green signal lights usually highlight
many indicators and provide away of intuitively knowing underlying software performance. End users
would want dashboard features to reduce and/or abstract the amount of information coming into to them
concerning developer and devel opment activities.

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (40 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

4.5 END-USER EVALUATION

4.5.1 Sample Human Computer Interfacing Dashboard

The following figure shows the most popular visualization of SMV was the dashboard like view.
=0lx

File Edit \View E.na:lpmwm P_rafer:mu '.I'sa.u-izawn-duw Hslp
D@ 8| & |wlel s|z|u| =|=(5|
=101

Pragram mal 2001 ¢

B ceal = e
| 1 '1
ot 2001 ¢ o e | i =

lin_hle_comvession_ard_emaling
fin_fadefine.inc

fin_Fegr0i0n e

fir_funchions. inc:

lin_peit.ing =
fin_report_paamebe s o . —
fin_repon_zelup.inc = Programs |

ccad

Iin_bsgin_zebup. inc
fin_fibe_camvession_and_emal inc [oea? =]
Iin Fdelne.inc

Appheston ecal ceal ead
o201 - I I I

=101 %]

‘M |' i ELIRLU L]

=100} >}

le+ éi
| i the Bollowsing command

el
| dimax mc FRINTER:HT -
!

Application Statistics SQR St
Blines of Code 9842 # Lines of Comments 1855 gt
#ofSQR: & & of Inchudes 52 # of Suppert |
[Srans 12iz4i2002 156

Figure 21 Most popular visualization of large SQR application suite.

In figure 19, the prospect of a dashboard is presented. This could be the forerunner of atrue dashboard
for software metric visualization for SQR inreal time. Figure 20 was the most popular view of the
source code from the initial group or panel - not the individual views or visualizations. This dashboard
view could be launched automatically upon start up of the SMV and be refreshed say hourly and/or on
source code change events. Sustaining the dashboard this way would allow system devel opment
managers to monitor underlining source code devel opment activities across an application domain in
real time. This option may be attractive for large-scale application suite developments. Adding
dashboard features of signal lights, highlighted drill down, and key indicator tracking would make the
SMV avery useful tool.

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (41 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

4.5.2 Summary of Main Findingson SMV Interface

The main human computer interface findings of the SMV interface are presented below in table form.
Each of the nine identified interface componentsis listed in their own box and simple comments are
provided as captured from the initial group or panel. These comments also provide insight into the state
of the design of SMV at the time it was presented to the users. The fourth prototype was the final design
presented to the end user group. The headings were selected from among comments of the group.

Table 2 SMV Interface Evaluation

Simple and natural Speak theuser's Minimizetheuser's

dialog language memory load
« Thenatura diadlogis ¢ SMV providesthe * The present design
in Englishandiswitha | user with language of SMV requires the
low fog index constructs in SOR user to remember why
« Theeaseof learning| ¢ SMV providesthe | they aredrilling down
to use SMV was user informationin both| onaview. By using
medium speed. numbers and intermsof | midi forms the user can

views see alimited form of
progress

* Thereare not
example scenarios for a
user to follow with

example SOR data.

Be consistent Provide feedback Provide clearly marked
e TheSMV usesa « Theviewisatthe [xits
Windows look and feel. | speed of processortothg < Inperforming a
e All colour coding of | user. series of visualizations
change events remains e Feedback isnot in the exits are to other
fixed until the user auditory form. This office productivity or
changes these colours. would be addressed ina| developer software.

new version.

Provide short cuts Deal with errorsin a Provide help
« Short cutsare positive manner * Thereisno help
provided as part of the o Errorsthat result provided in SMV at this
menus of SMV. from coding errorsin time.
« Additional short SMV at thistimeresult | o User scenariosand a
cuts and user defined in the lost of help compiler could be
short cuts to selected visualizations. Anerror| provided in anewer

views or visualizations | recovery or debugging version.
could be added to anew| moduleisnow required.
version.

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (42 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

So from ingpection of the comments and from the interviews it is apparent that additional effortsin
terms of dealing with errors and providing help in using SMV is required.

4.5.3 Objectivesand Task Meeting

The objectives of this research included four main points. The first point wasto assist large SOR
development projects in the construction and maintenance of SQR artifacts. SMV does this through
dashboard like visualizations of the artifacts. The second point was to augment software managersin
assessing productivity of SOQR developers and overall project progress. SMV does this through
providing colour-coded views of individual developer contribution to a SQR application suite. In
addition the application suite can be viewed in its entirety at any point of time - resulting in a progress
statement at that point in time. The third point or objective was to provide software engineers with an
estimating tool for SQR artifact upgrades. SMV does this by colour highlighting the difference in the
upgraded application suite with the old application suite. In heavy ERP uses of upgrades this becomes
an estimation tool for effort that could be refined over the years with history of colour matching of
actualsto estimates. Finally, the fourth point was that software managers would be provided with a
rapid snap shot of code status. SMV does this.

4.5.3.1 Revised Task Example 1:

An SQR developer who has written 100 KLOCs in 12 SQRs for alarge hospital over 2 years would put
these SQRs into an application suite. He would also put his'includes in the application suite. He would
take a snap shot of the code. When required to make changes to the appliss

WestMOST Proposal for “Project Course”

activities. From these snapshots he would know developer performance and maintenance effort on any
given suite of SQRs. Similar snapshots would occur when he was being asked that he upgrade SQRs for
say annual tax changes for an ERP system.

4.5.3.3 Revised Task Example 3:

A delivery manager for a SQR software boutique who needs to convert customers from another report
writer would not make extensive use of SMV. He could use the other language feature of SMV but this
would require that the other language had flat file capability. Although the author and Darrin Miller
[Miller2002] have written SQL Plusto SQR converters;, SQR to SQR converters; and PL/SQL to SQR
converters, thereis no visualizer for language artifacts other than flat files or SQR. Some languages
such as Crystal and Envision could be force fitted to create flat files of their software activities and then
run through the SMV. However, there are likely aternatives for conversion estimation and
visualization.

4.5.3.4 Revised Task Example 4:

A freelance SQR consultant who gets called in to make an SQR product suit more efficient would make
extensive use of SMV. Each SOR of the suite would be viewed in SMV and all of the visualization
features would be viewed. Thiswould result in knowing where to make most likely code changes with
highest likelihood of increasing efficiency. Code changes of programming style and language
constructs would be immediately obvious. Replacement of database calls with lookup table command
retrievals would be immediately obvious. The number of begin-selectsin a SQR would be obvious and
their possible replacement with dynamic begin-SQL would appear. Many additional applications of
SMV would be possible to the extent the freelance SQR consultant was familiar with SQR and SMV.

4.5.3.5 Revised Task Example 5:

A delivery manager for Brio professional services gets tasked with rapidly creating financial reports for
adata warehouse that is being fed data from a newly installed ERP system would use SMV. Indeed this
was the sparking example for the creation of SMV to begin with. In alimited view, this was the reason
SMV was created in thefirst place. All of the current design of SMV would apply in this revised task.

4.5.3 State of Design

The state of the design is of medium to high quality with the initial group users reporting usefulness of

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (44 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

the visualizer. However, the implementation in Visual Basic 5 of the prototype islow to medium
quality. SMV should be redeveloped using Java, SQUEAK, or Visual Basic .NET and alternative
architecture using a multi tier approach should be built. However, the ssmplicity of the design meets the
entire core requirements identified earlier. The increased functionality as the prototypes were devel oped
has led to improvements in SQR software metrics. In general, the design with the identified failures
summarized above appears quite solid. No reported problems have been indicated from theinitial group
of original users and their tasks - just adesire for more features and to have a complete version. The
overall design was aVisual Basic GUI client to a SQL database. Connectivity was achieved using
ODBC. Component reusability was developed for many of the presentation graphics and as a by-
product of using Visual Basic. A mgor redesign decision would be using vector scaled graphics as
opposed to pixel-generated graphics. However, implementation of vector scaled graphics would require
avirtual machine that addressed sub pixel drawings on what ever target display hardware that was used.
SMV interrogates the display hardware and related driver and an attempt is made to optimize the
visualizations to the display. Thisworkswell in a Windows environment and from inspection of the
screen shots presented in this paper all recent versions of Windows are presented. Also presented is
different granularity of displays, which can highlight more or less KLOCs per display.

The SQL database is arepository of the KLOCs and has many more attributes in it then have been
presented in this paper. Theloading of the database is accomplished by SMV through using Visual
Basic data management language commands but could easily be accomplished using SQR. Thiswas not
done, as proliferation of aruntime only version of SMV was desired for end user interface testing. A
disk of the runtime version is available along with GNU licensed SQRs from the author and from the
SQR community. Ray Ontko’s contributed SQRs are also bundled with the CD for end user interface
testing. However, bundling of aruntime SQR license was not possible with the first CD. During
loading of the database, parsing of the lines of code occurs and some attributes are added. Parsing is
necessary as the double quotes ‘"’ do not insert into a SQL database well. There are work- a-rounds
provided by SMV.

Considerable more features are available in the final prototype of SMV then have been included in this
paper. In particular, language filtering of begin-select compression and other constructsisincluded in
the final prototype. Many additional features could have been added and will be added to subsequent
prototypes, if adecision to commercialize SMV ismade. SQR code optimization and security checking
will be the first added features along with interfacing to the common source code management system
files.

5.0 CONCLUSIONS AND RECOMMENDATIONS

This section of this document is self-explanatory. However, the conclusions and recommendations
come from using SMV within theinitial group and from SMV s application to alarge commercial

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (45 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

application.

5.1 IMPACT OF INDUSTRIAL APPLICATION

The use of SMV could consist of the following:

* When you have three or more SQR developers doing a development project, measurement of
their productivity and adherence to standards could be visualized by SMV;

* When doing upgrades to legacy software or purchased software SMV could be used to view the
differencesin SQRs from one version to another;

* When needing ayear to year snapshot of software changes SMV could be used to
measure/visualize source code activities throughout a given year;

* When therevision control system provides only textual information SMV could complement
the textual information with visualization of changes; and

* When checking escrow source code SMV could be used as a rule of thumb measure of source
code changes.

There are many other impacts that SMV could have; however, the above capture the main impacts.
Visualization techniques combined with a useful interface provide another way of viewing source code,
other than textual.

5.2 ADOPTION ISSUES

The major adoption issues could be solved with marketing and enhancement of the current SMV

version. Marketing would result in easing the learning curve of use and the enhanced features of

graceful degradation on SMV failure combined with HEL P would result in easier adoption of the
visualizer.

The following list some of the adoption issues that could be addressed:

o Compatibility with other metrics and when to use statistical measurements, hard counts,
standard graphic representations, and when to use avisualizer. Software managers have their own
ways of measuring and SMV could be tailored to adopt user preferences of measuring.

o Scalahility to very large report suites that typically include mixed computing language reports.
SMV does not support multiple language application suites and/or systemswell. It has been
optimized to visualize SQR. However, interfacing to other flat file source code languagesis
possible with language identification through file extension.

e Granularity of visualization and how to set appropriate defaults for the end user of the
visualizer. SMV now creates its own optimization of the display of a given visuaization. An
alternative approach might be to allow user preference setting that would remember the last user
display of agiven visualization and remember the overall user selected defaults for the SMV tool
itself.

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (46 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

e Simplicity in reporting and analysis and how the end user learns or acquiresinsight given the
kind of mediathat is being presented. SMV could have arepository of routine visualizations that
an end user usually does. Thisrepository would then allow dashboard like timeframe setting snap
shots of a collection of visualizations. This could result in many spin-off applications of SMV. For
example; security is becoming amajor concern. Many SQRs are attached to a Brio Portal and/or
Brio Performance suite and could be subject to malcode attacks. Viewing snapshots with colored
highlights of underlying changed source code could show possible security breaches. Also,
searching SQR application suites for Trojans and other in-planted malcode by disgruntled
developers would consist of looking for key language constructs. The author created an Easter egg
in an application suite; however, to launch the Easter egg required a call command to the operating
system and this could be trapped.

* Agency and visualization learning or can the visualizer learn the visualizations of the end user
such that repetition of visualization with changes to underlining source code data occurs
independent of end user initiative. This point issimilar to the point previousy made. However, in
this case, SMV would ‘learn’ from the user what visualizations to run and perhaps compare these
visualizations to previous ones or to known expected patterns. Thiswould allow service like
operations of SMV where atune up of SQR was performed say annually or for a source code
escrow agent.

These issues should be addressed in a separate document and would be the objective of further SMV
research and devel opment.

5.3 IMPLEMENTATION PLAN

The maor implementation plan is to continue to add featuresto SMV. Rewriting is possible and may
occur. Spreading of the revised SMV should likely occur through providing an evaluation copy to the
end user community likely through aweb call out and download.

5.4 CONCLUSION

Visualizing augments, it does not replace standard metrics. SMV has added direct SQL for those who
prefer their own counts; however, SMV itself provides aform of interface to source code management
that is useful.

SMV currently has arepository of 170,000 lines of SQR in 2 report suites. SMV has not |oaded say
Peoplesoft Payroll but think thisis anatural for confirming upgrade activities for those who have copies
of SMV and Peoplesoft. SMV is currently attempting multi language visualization for aweb enabled
wellhead software suite at 1.5 million lines of code.

The author has started to play with the granularity of the visual representation and is currently using
twips; but thinks that language construct filtering may be a better visual than increased visual shrinkage.

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (47 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

Once a user has a collection of settings and properties that represent the kind of visualization of interest
to oneself, it is very easy to do periodic snap shots of things like progress in development, changesin
code migrated across areport suite. To those not intimately familiar with SQR it becomes avisual assist
to managing.

Visualizing can provide additional management insights into SQR coding activities and its maintenance.
These insights can be provided without intimate knowledge of SQR programming.

APPENDIX

» Ethical Research Form

* Human Computer Interface Questionnaire

» Search Engines Used

* References

» Participants Requiring Email Copy of the Report

A. Ethical Research Form

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ALBERTA
INFORMED CONSENT FORM

Research Project Title: WMO099 Visualizing SQR Quality Metrics
Investigators: John James Willson

This consent form, a copy of which has been given to you, is only part of the process of informed
consent. It should give you the basic idea of what the research is about and what your participation will
involve. If you would like more detail about something mentioned here, or information not included
here, please ask. Please take the time to read this form carefully and to understand any accompanying
information.

This study is concerned with evaluating created interfaces to athermostat. Y our experiences and
comments during this study will be used to analyze problems and make recommendations for improving
the system.

The study will require 10 minutes during which time you will be asked to carry out 3 tasks using the

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (48 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

system. After the tasks, there will be time for you to make additional comments about the system, and
time to discuss the goals of the study.

As one way of thanking you for your time we will be pleased to send you a summary of the results of
this study once they have been compiled (probably in about 4 months). This summary will outline, in
genera terms, the problems found with the interface and our recommendations for improving it. If you
would like to receive a copy of this summary, please write down a contact address here.

Contact address or
email;

All of the information we collect from you (observations and notes made by the experimenters) will be
stored so that your name is not associated with it (we will use an arbitrary participant number). The
write-up of the data will not include any information that can be linked directly to you. The research
materials will be stored with complete security throughout the entire investigation. Do you have any
guestions about this aspect of the study?

We may wish to quote one or more of your comments about the system in our final report, in order to
better illustrate problems or possible solutions. Any such quotations will be carefully presented to ensure
that it is not possible for anyone to trace them back to you. Do you have any questions or reservations
about this?

Y our signature on this form indicates that you have understood to your satisfaction the information
regarding participation in the research project and agree to participate as a participant. In no way does
thiswaive your legal rights nor release the investigators, sponsors, or involved institutions from their
legal and professional responsibilities. Y ou are free to not answer specific items or questions in
interviews or on questionnaires. You are free to withdraw from the study at any time without
penalty. Your continued participation should be as informed as your initial consent, so you should feel
free to ask for clarification or new information throughout your participation. If you have further
guestions concerning matters related to this research, please contact:

John James Willson: Department of Computer Science, University of Alberta
Telephone: (780)470-3744
email address: jwillson@dssltd

Participant’ s signature:
Date:

Investigator’ s signature:
Date:

A copy of this consent form has been given to you to keep for your records and reference. Thisresearch
has the ethical approval of the instructor of Westmost WM-099 — Dr. Ken Wong.

B. Human Computer Interface Questionnaire

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (49 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

Research Project Title: WM 099 Visualizing SQR Quality Metrics
Investigators: John James Willson

1. What tasks are required to manage or maintain an SQR software suite?
2. Who elseisinvolved in determining what software metrics should be?
3. What software/SQR quality metrics or measurements do you use now?
4, How do you control your software development and/or maintenance projects now?
Work breakdown structure b
program
Work breakdown structure
by knowledge domain

Assignment of the most
qualified resource

Outsource to most qualified
firm and/or resource

Ad hoc

Other (please explain)

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (50 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

5. What features in a software quality visualizer are important to you ?

Interface to current version
and /or revision control
software

Ease of loading and
unloading SQRs and/or
includes to be visualized

Range of granularity of
presentation of visualization

Interface to an editor and/or
other tools such as Brio
report

Clarity of visualization

Ability of the visualizer to
"learn” likely visualizations

Ability of the visualizer to
represent information
through

- language constructs
- author efforts
effective dated

- SOR and other
languages

- Dependencies
Cross referencing
Other (please explain)

Ability of the visualizer to
cut/paste/print into other
office productivity tools

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (51 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

6. How often do you use software quality metrics?

7. How many different types of software quality metrics or visualizations have you used?
8. What is the most important change that you would make to the software metrics that you
have used?

9. What have we failed to ask about software metric visualization that you would like usto
consider?

C. Search Engines Used

HURL

NAME=Y ahoo

URL =http://www.yahoo.com/
HURL

NAME=WebCrawler

URL =http://www.webcrawler.com/
HURL

NAME=Northern Light

URL =http://www.northernlight.com/
HURL

NAME=MetaCrawler

URL =http://www.metacrawler.com/
HURL

NAME=McKinley

URL =http://www.mckinley.com/
HURL

NAME=Lycos

URL =http://www.lycos.com/

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (52 of 56) [4/28/2003 2:34:10 PM]

WestMOST Proposal for “Project Course”

HURL

NAME=L ookSmart

URL =http://www.looksmart.com/
HURL

NAME=Internet address finder

URL =http://www.iaf .net/
HURL

NAME=InfoSpace

URL=www.infospace.com
HURL

NAME=HotBot

URL =http://www.hotbot.com
HURL

NAME=GoTo!

URL=www.goto.com
HURL

NAME=Google

URL =http://www.google.com
HURL

NAME=Go

URL=www.go.com
HURL

NAME=Excite

URL =http://www.excite.com/
HURL

NAME=Dogpile

URL =http://www.dogpile.com
HURL

NAME=Dgja

URL =http://www.deja.com
H#URL

NAME=Ask Jeeves

URL=www.askjeeves.com
HURL

NAME=AltaVista

URL =http://www.altavista.com/

D. References

[Booch2002] Grady Booch Quality Software and the Unified Modeling Language, Rational Software Corporation, 2002,
http://www.rational .com/

[Brio2002] Brio Performance Suite 8, Brio Software http://www.brio.com/

[Burton1994] Peter Burton SQR User's Guide and Developer's Kit 1994 MITI Long Beach, CA

[Dask1992] Michael K. Daskaantonakis A Practical View of Software Measurement and I mplementation Experiences
Within Motorola |EEE Transactions on Software Engineering, vol. 18, no. 11 (November 1992), pp. 998-1010.

[Dbminer2002] DBMiner, DBMiner SX 2002, http://www.dbminer.com/

[Dumkel999] R. Dumke Metrics Tools - An Overview. Metrics News, 4(1999)1, pp. 21-28

[Eick1992] S.G. Eick; Steffen, J.L.; Sommer, E.E.: Seesoft -- A Tool For Visualizing Line Oriented Software Statistics. IEEE
Transactions on Software Engineering, 18(1992)11, pp. 957-968

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (53 of 56) [4/28/2003 2:34:10 PM]

http://www.rational.com/
http://www.brio.com/
http://www.dbminer.com/

WestMOST Proposal for “Project Course”

[Eick1996] Thomas A. Ball and Stephen G. Eick. Software visualization in the large, |IEEE Computer, April 1996, pp. 33-43.

[Emden2002] Eva van Emden, Leon Moonen, jCosmo — Java Code Smell Browser Tool,
http://www.cwi.nl/projects/renovate/javaQA/

[Florac1999] William Florac and Anita, Carleton, Measuring the Software Process, Addison Wesley, Reading Mass.
[GM2002] FQS Poland, User Manual, Ghost Miner, 2002,

[Gutwin1999] Carl Gutwin, Visualizations of Interaction, Technical Report 99-1, HCI Lab, University of Saskatchewan,
1999

[Knight2000] Claire Knight, System and Softwar e Visualizations, Handbook of Software Engineering and Knowledge
Engineering, 2000, http://www.durham.ac.uk/

[Kuh1994] I. Kuhrau A Tool-Based Analysis of Borland C++ Master’s Thesis, University of
Magdeburg, February 1994.

[Landres1999] Galina Landres and Vlad Landres SQR in Peoplesoft and Other Applications 1999 Manning Pulbications,
Greenwich, CT

[Miller2002] Darrin Miller Harnessing SQR Brio Software User’s Conference November 2002, http://www.brio.com/

[Mellen1998] Don Mellen SQR Programmer Reference 1998, Ray Ontko & Co, Richmond, Indiana
[Norman1990] Donald Norman, The Design of Everyday Things, Doubleday, New Y ork, New Y ork

[Nielsen1999] Jakob Nielsen Interfacing with Jakob Nielsen June 1999 http://www.useit.com/

[Qsm2002] QSM Company, The SLIM Software Tool Suite, 2002, http://www.gsm.com/

[Sgi2002] Silicon Graphics Mindset , 2002, http://www.sgi.com/go/mindset/

[Sorenson1993] Boloix, G., Sorenson, P.G. and Tremblay, J.P Software "Metrics using a Metasystem Approach to Software
Development”, International Journal of Systems and Software 20, 1993: 273-294.

[Swanson2001] Gregory Swanson and Lee Globus Visualization for a Graphical Programming Environment, Nielsen 2001,
http://www.tslice.com/

[Ta01999] Xie Tao, Huang Huang, Xiangkui Chen Object Oriented Software Metrics
Technology 1999 Ricoh Company Ltd. Tokyo, Japan & Software Quality Evaluation Group Peking University

[Toth1996] R. John, J. Madhur, R. Stewart, K. Toth, Software Quality Metrics Process For Large Scale Systems
Development, 1996 INCOSE Symposium, July 1996

[Willson1998] John Willson, Stephanie Crafford U.SA. Computer Consulting — For Canadians and Other Aliens, 1998,

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (54 of 56) [4/28/2003 2:34:10 PM]

http://www.cwi.nl/projects/renovate/javaQA/
http://www.durham.ac.uk/
http://www.brio.com/
http://www.useit.com/
http://www.qsm.com/
http://www.sgi.com/go/mindset/
http://www.tslice.com/

WestMOST Proposal for “Project Course”

DSS Ltd. http://www.dssltd.com/

[Willson2001] John Willson EXtreme SQR Programming, Unpublished Brio 2001 presentation,
http://www.dssltd.com/whitepapers/

[Wong1996] Kenny Wong On Inserting Program Under standing Technology into the Software Change Process Fourth
Workshop on Program Comprehension (WPC 1996)

[Wong1999] Kenny Wong The Reverse Engineering Notebook, PhD. Thesis, Department of Computer Science, University of
Victoria http://www.cs.uvictoria.cal

E. Participants requiring an email copy of the report

TIr2@shaw.ca

Robert.goshko@axis-dev.ca

Wcheng@telusplanet.net

Darrin.miller@brio.com

Dan.Thornhill@motorola.com

willhan@shaw.ca

F. Example Citation Searching for Lexical, SQL, Parsing software

Search Terms Citations or Hits
"lexical analyzer" software 10,300

"SQL analyzer" software 052

Lexical parsers software 10,600

SQL parsers software 15,700

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (55 of 56) [4/28/2003 2:34:10 PM]

http://www.dssltd.com/
http://www.dssltd.com/whitepapers/
http://www.cs.uvictoria.ca/
mailto:Cheard@ab.cnib.ca
mailto:Ginajce73@hotmail.com
mailto:Ingramrl@freenet.edmonton.ab.ca
mailto:Stephanie.crafford@telus.com
mailto:Stephanie.crafford@telus.com
mailto:willhan@shaw.ca

WestMOST Proposal for “Project Course”

file:/lIC|/westmost/finalrpt/Copy%200f%20final.htm (56 of 56) [4/28/2003 2:34:10 PM]

	Local Disk
	WestMOST Proposal for “Project Course”

