Requirements Management of the

"Dashboard Software Metric
Visualization for SQR" Project Using

Telelogic's Doors Software

April 2003

Prepared By: John James Willson
Prepared For: Prof. Armin Eberlein
Westmost 010 Course

Table of Contents

ABSTRACT
1. INTRODUCTION
1.1 REQUIREMENTS MANAGEMENTcotttuttttiieeeieiitteeeeeeeeeietaeseeeeseeeetaaseesesssessasseessesseessaraseeesssssssssseeesesssnsssseeees
1.2 WHY SMV - SOFTWARE METRIC VISUALIZERcoeiiiiiiiitiieieeeeeiieiieeeeeeeeeeesisseeesesseessasesesesssssssasseeesssssssssnseeees
1.3 APPROACH TO APPLYING DOORS TO SIMV ...ttt ettt e e et e e e e et e e e e e seaaaaeeeeas
2. DOORS
2.1 EVALUATION CRITERIA OF REQUIREMENTS MANAGEMENT SOLUTIONScuuvviiieeeeeiiiirereeeeeeeiinnreeeeeeeeseinnnneeeess
2.2 ADDITIONAL NON-FUNCTIONAL REQUIREMENTS MANAGEMENTcvviiiiiiiiirreeeeeeeeeiiitrereeeeeeesinnreeeeeeeeseinnnseeeess
2. 2.1 INSTAILALION Of DIOOFS ...ttt et b ettt
2.2.2 Features expected and ROt PFOVIARcccccoioiiieiieii ettt nneens
2.3 SUBSEQUENT APPROACH TO SIMV ..ottt ettt ettt e e e e e e sttt e e e e s eennaaaeeeeeessenaaaeeeeas
3. SMV PRIOR TO DOORS REQUIREMENTS MANAGEMENT
3.1 DOCUMENTS AND REQUIREMENTS OF SIMV ..ottt ettt ettt e ettt e e e e s eeatan e e e e e e e ennaaseeeeeeeans
3.2 TRACEABILITY AND TRACKINGocuuuviriieeieeiiieeeeeeeeeeeeatreeeeeeeeestaseeeeeesseasasseeeeesssesassssssesseessssresseesssssnsssseeessenins
3.3 CONFIGURATION MANAGEMENTuuuuuiiiiiiiiieiittereeeeeeeeittereeeeeeeestaaseeeseesenssatesessesseesssatesseesssesssteseeseesssnsraeseeees 10
4. SMV WITH DOORS 11
4.1 CONVERSION TO DOORSuuttiriiiieieieiiiteeee e e eeeee et e e eeeee e e e e e eeetaae e e e e eeeeetaareeeeeeeeetaaseeeseeeenatareeeeeeeanasrreeeeas 11
4.2 IDENTIFYING AND CAPTURING REQUIREMENTSccciiiiiiiutririeeeeeiiiirereeeeeeeiitsereeeeeeenessnssessseessnssssssessesssnsissseeess 14
4.3 FEATURES OF THE DOORS TOOL USEDcceeeiieiiitrieeeeeeeeiiitteeeeeeeesiiisreseeeeeeaseissssessseeessissseseseessssissssessessssssssesess 14
4.4 REQUIREMENTS PROJECT FLOW ...coiiitiiiiiiee ettt e ettt e e e e e e etaaa e e e e e e e ettaaaaeeeeeennsanaeeeeas 15
4.5 TRACING REQUIREMENTS AND LINKING........cceiititrrrieeeeeeiiitieeeeeeeeeiiitteeeeeeeeeeeitaseeeeeeeeesssasseseseeesesssseessesessssrseeeees 15
4.6 VERIFICATION OF REQUIREMENT COMPLETIONcciiiiiiiutiitieeeeeeiiteeeeeeeeeseisseeseeessessssasseessessssssssssesessssmsmssseees 16
4.7 NOT ENOUGH LOW LEVEL REQUIREMENTSuuuutiiiiiiiiiiitieeteeeeeeiitreeeeeeeessisaeeeeeseessssasssessesssssnssssessesssmsssseeees 17
4.8 HISTORY OF REQUIREMENT CHANGES AVAILABLEocutviiiieeieeeiieeeeeeeeeeeieeeeeeeeeeseiaaeeeeseesssnnnassessesssnnnnnseeeeas 17
4.9 DXL - NOT FOR EVERYONEovviiiiiiiiiiiiieieeeeeeiieeeeeeeeeeeetaeeeeeeseeeaaaaeeeeseessatasssesssessasasseeesessansassseseesssnssseseeees 18
4.10 INTERFACING OUT AND DOCUMENTATIONuuuuviriiieeeeiiiieeeeeeeeiiiurereeeeeeesitaeeeeseeessssasseessessissssssessesssmsssseeees 18
4.1 Microsoft Office SUILe PPOGUCESccocueiiiiiiii ettt aae s 18
B2USCUNE WED ..o e e e et 19
4.3 COMPILEA HEIP ...ttt ettt ettt st e be s e e sbeetseesseete e e ebeenseenees 19
5. CONCLUSIONS 19
5.2 INTERFACE IMPROVEMENTSccciiiiiiiutteieeeeeeeiiiteeeeeeeeeeeeittereeeeeeeeeetasseeeeeeeeeetssseeeseeeeesssasseseseeeaassrsseeeeeeenassrsreenes 19
5.3 EXCELLENT COLLABORATIONcooettuutttteeeeeeiittereeeeeeeeiitaereeeseeeeeitasseeeseeeaasssssesseeeeeaissssseseseeesasrssseseeeenssssrseeees 19
5.4 CHANGE THE DOORS IMETAPHORcuvuviiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeaaeseeeeeesssssaseeeeeesssesnasassesssesssssassesessssssnesreees 21
5.5 OVERHEAD VERSUS EFFICIENCYuutvutiiiieeieeeeeeeee e e eeeeeeeeeeeeeeeeeenaaeeeeeeeesesssaaeeeeeesssessnstessesssessssessseseesssnnasseeeeas 21
5.6 PUTTING THIS DOCUMENT IN DIOORScoiiiiiiiiiiiiieee ettt e e eeeeeiee et e e e e s eeaaaaeeeeeeseesanatseeeeessssssteseeseeessnnnanseeeeas 21
APPENDICES 22
A. REFERENCES (THIS DOCUMENT)ceetteiitteettesteeeteesseessseessseesssesssesssseesseesssessssessssessssessssessssessssessssessssessssesssses 22
B. REFERENCES (SMV EXPORTED FROM DOORS)....ccutiiitiiiiieiiieeiieiieeeieesieesteesteessseesnseessseesssessssessssessssesssesnsses 22
List of Figures
FIGURE 1 SMV DIRECTORY STRUCTUREuuuvvviiiieeiiiireeeeeeeeeieiiereeeeeeeeesiaareeeseeseesissessseeeesssssseseseseeesssssssssssessonsisssseees
FIGURE 2 REVIEW OF VISUAL BASIC CODEuuvvviiiiiiiiiiieieee ettt eeetae et e e e eeeaaaaee e e e eeesaataareeeseeesnsaaneeeseeesnnasreeeeeas
FIGURE 3 RELATIONSHIP OF REQUIREMENTS TO SOFTWARE PRODUCTS WITHOUT DOORS........cccovviiiiieiiiieeeiree e 10
FIGURE 4 DOORS DIRECTORY STRUCTURE......c0vttiieiiiiiiurteeeeeeeeeiiirreeeeeeeeesisseseseeeessetsssseseseessessssssseseessssisssssssesssssisssesses 11
FIGURE 5 EXAMPLE START OF 11 PAGE DOORS USER REQUIREMENTS DOCUMENTccotviturreeeeeeeeeiirreeeeeeeeeennreennns 12

C:\Westmost\wmO010\assign3\a3_doors.DOC Page 1 02/24/04

FIGURE 6 INITIAL DOORS SIMYV DOCUMENTS.cetittiieiuttieeeeeteeeieeeeeeeeeeesissteeteessessesassseessssssssssseesssssssassseesssssssrsseeees 13

FIGURE 7 DOORS CAPTURING OF SMV REQUIREMENTScceittiuutirieeeieiiitteeeeeeeeeiisreeeeeseeeisssseseeeseesssssnssessessssssssseeses 14
FIGURE 8 USE OF DOORS WIZARDSccciiiiiiituiteeeeeeiieiiteeeeeeeeeesiiseeeeeeseeesssssssssesesasatsssseesssssssssssssesesssmsssssssessssmnrsseesees 14
FIGURE 9 USE OF DOORS IMPORT/EXPORT OF RICH TEXT......uutiiiiueiiiitieeeeieeeeeeeieeeeeeeeeeeseeeeesessaseesensaeessnnseesssnsssessnses 15
FIGURE 10 DOORS TRACING REQUIREMENTS THROUGH TO CODEccootuvviiiieeeeiiiieeieeeeeeeeiaeeeeeeeeeeesinneeeeeeeeensnnreeeeas 16
FIGURE 11 USE OF DOORS ANALY SIS ...eeiiiiiiiiutreeeeeeeeeiiueeeeeeeeeeiiissereeeeeessisssseseseesssssssssesesemssisssesesessmmsissssssesesmsissesses 17
FIGURE 12 DOORS BUGS AND LLOCKSccceiiiitiitiiieee ettt e e eeeeiaeee e e eeeeataae e e e e eeeseataaeeaeseeesnstsaseseseeesesaasseseeeeennsasereeeeas 18
List of tables

TABLE 1 DOORS DESCRIPTORS APPLIED TO MICROSOFT OFFICE PRODUCTIVITY TOOLSooiiiiiieeiiiieeeeiee e eeeeeens 6
TABLE 2 SMV REQUIREMENTS WITH-OUT DOORSuuviiiiiiiiiiiiiiieieee e eeeieeee e e e eeeiateee e e e e eeeaaaeseeesseesnssaneeeeeessnnnnsneeeeas 8
TABLE 3 SUMMARY IMPROVEMENTS WITH DIOORS......uuviiiiiiiiiiiiiiieiiee ettt eeeeeetaee e e e e eeesiaaeeeeseessnssaaseeeeessennnanreeseas 19

C:\Westmost\wmO010\assign3\a3_doors.DOC Page 2 02/24/04

ABSTRACT

This report describes the application of Telelogic's Doors 6.0 SR1 Enterprise
Requirements Suite product to a software development project entitled "Dashboard
Software Metric Visualization for SQR" (SMV). The software project consisted of all
aspects of requirements engineering but was completed without any automated
requirements engineering management software. The software project artifacts directly
concerned with requirements engineering were subsequently managed using the
Telelogic's Doors product. This management could then be used as a baseline to compare
the usefulness of the Doors product and to make comments concerning the product.

After the introduction, the following pages describe the Doors product and how it was
going to be evaluated with SMV. Subsequently, SMV requirements engineering and
management pre-Doors is then described. SMV using the Doors product is described in
some detail. Finally conclusions about the usefulness of Doors to a software
development project are presented.

Although there are problems of installation and operation of Telelogic's Doors product,
the benefits of using the product and automated requirements management far outweigh
the problems. The problems are enumerated through out the report and from that
perspective this report may appear negative. The report also highlights the clear
advantages for even a small project like SMV that accrue with automated requirements
management. In particular, the insights down to the code level are possible through the
linking and maintenance of requirements through out the systems development life cycle.
These insights provide for not just contractual observations; they also provide assistance
in doing projects themselves.

As a result of retrofitting SMV requirements and 3 cycles of a spiral life cycle including
code through Doors, many comments about the SMV project itself could be made.
Requirements were identified and never met. Code was written that had no link to any
requirement. Impacts of changing requirements spawned by the stakeholders were never
estimated or prioritized. Just done. The quality of software projects could be enhanced
through even informal requirements management and greatly improved through
automation of the requirements engineering process. It is not that there was not any
requirements management in SMV. It is that by automating and highlighting
requirements management additional insights into the project itself are possible.

C:\Westmost\wmO010\assign3\a3_doors.DOC Page 3 02/24/04

1. INTRODUCTION

The following paragraphs provide some comments concerning requirements
management. Following those comments, a discussion of why the SMV project was used
in this report is provided. Finally, the approach to using the Telelogic's Door product
with SMV is discussed.

1.1 Requirements Management

One comment on requirements management that is not often made, is that

requirements management provides a way of achieving closure on a given project.

By agreement not to pursue requirements or by completion of all prioritized

requirements, closure on a project can be proven. However, requirements

engineering is not just concerned with project closure. It is also concerned with:

- The capturing of project requirements.

- Tracing requirements through project artifacts.

- Measuring and identifying the impacts or changing requirements with in a
project. And,

- The answering of whether all requirements of a given project have been met.

One advantage of an automated requirements management product is that it can

provide a baseline for measuring project change. In the SMV project, the first

prototype was considered a baseline. Indexing or numbering of requirements did

not occur until the first prototype was built.

1.2 Why SMV - Software Metric Visualizer

In the SMV project, requirements management was not well done from the point
of view of managing requirements. Requirements were successfully elicited and
described both in writing and diagrammatically. However, requirement
identification through numbering and tracing was not accomplished until well into
the project.

The stakeholders of the SMV project consisted of sponsors (both academic and
industrial), a project manager, developers, and a user community or group. These
stakeholders subsequently became some of the views used in the Doors / SMV
review.

SMV was a small project consisting of 100,000 lines of code (100 KLOCs) and
50 or so requirements. This made it readily possible to use Doors through all
aspects of requirements engineering management as a microcosm of a larger
project. Doors was applied to SMV artifacts from requirements elicitation
through to coding.

SMV was a master's project. It consisted of building a working source line
visualizer with 3 prototypes completed, end-user evaluation and numerous
artifacts. Artifacts included a shareware working SMV run time disk; PowerPoint
slides; Adobe documents; Work documents; Visual Basic code; Install Shield
code and DLLs; and market place, end user, and developer requirements

C:\Westmost\wmO010\assign3\a3_doors.DOC Page 4 02/24/04

SMV was chosen because it was a contained project in which to apply Doors.

1.3 Approach to applying Doors to SMV

The approach to applying Doors to SMV consisted of converting selected
requirements documentation and artifacts to Doors. Evaluation of Doors while
doing the conversion. Then trying multiple Doors features to address how SMV
could be helped with respect to requirements management both historically and
for future development. Through out the above activities, documentation of what
was occurring was completed for this report.

2. DOORS

There were many expectations of using Doors. A summary of Doors expectations is that
Doors:

Stores requirements using industry standards and templates.

Adds attributes and or columns to requirements for sorting and filtering

Links requirements with project artifacts and maintains the traceability chain both
with fan-in and fan-out to SMV requirements

Creates views of requirements by stakeholder need-to-know, and

Handles changing requirements in an automated way.

This section of the report provides evaluation criteria to requirements management
solutions. In addition it provides how requirements both functional and non-functional
are met in SMV possibly using Doors.

2.1 Evaluation Criteria of Requirements Management Solutions

A major personal evaluation consisted of ease of use and rapid learning of a tool

such as Doors with out the use of hardcopy or compiled help files and/or training.

Other evaluations from industry include:

- How Doors captures requirements;

- What infrastructure that Doors uses to support requirements management;

- How does Doors support requirements flow through out the SMV project;

- How are requirements tracked, traced and their impacts measured;

- How does Doors use the SMV artifacts that were not contained in the Doors
environment;

- How does Doors communicate across the SMV user community; And

- What is Doors look-and-feel in say the Windows networking environment.

2.2 Additional Non-Functional Requirements Management

The evaluation criteria above is more related to the functional needs of a
requirements management solution. However there are also some non-functional
requirements that should be used for evaluation. How a product such as Doors is
installed and some of its possibly missing features are also causes for evaluation.

2.2.1 Installation of Doors

C:\Westmost\wmO010\assign3\a3_doors.DOC Page 5 02/24/04

There were problems associated with the installation of Doors mostly related to
security and the Windows environment it was going into. (paths in particular
including the license location and registry took time to set up) These problems
were readily over come by exploration and multiple installation attempts;
however, Doors did not install the way many other software products install in the
Windows environment and took some shoe horning.

2.2.2 Features expected and not provided

A more severe problem from the point of view of evaluation of Doors were the
features expected and not provided (perhaps in this version of the software).

Direct import from Windows required a higher skill level then anticipated for
SMV Windows based artifacts. A work around was developed for implementing
SMV requirements artifacts but it was a non-obvious work around. In particular,
Doors table like structure and/or metaphor seemed to be the problem with Words
table objects.

The following table describes the Doors / Microsoft Office Productivity Suite as
guessed by the author.

Table 1 Doors descriptors applied to Microsoft Office Productivity Tools

Doors Microsoft Office Productivity Suite
Attribute Field or Column

Object (OLE look-a-like in MS terms) Record or Row

Module Table or Worksheet

Project File

Proprietary Data base / Server SQL Server / Access

Many of the problems of using Doors with SMV could be ascribed to the above
table and its related metaphor. Tables in Word did not import correctly to Tables
in Doors. Exporting of Tables in Doors would crash the Doors environment if not
exported using rich text format. Using the Word format, the Word styles of SMV
did not readily translate to vanilla Doors. All of these problems were overcome,
but the learning curve was steeper than expected. Doors appeared to be database
centric and that the database is proprietary. However, all information is retained
in the Doors database and most of the clashes between the Doors look-and-feel
and the Windows look-and-feel appear related to the Doors database. It is likely
that the database has limited SQL capabilities since insertion of SMV items into
the database was akin to insertion into many enterprise resource packages.

2.3 Subsequent approach to SMV

Problems with simple creation with in Doors were few. However, SMV was
being Doors retrofitted. So work arounds were developed. These work arounds
actually proved the power of what Doors was capable of. For example, most
industry standards were already formatted as templates in Doors. By using these

C:\Westmost\wmO010\assign3\a3_doors.DOC Page 6 02/24/04

templates considerable number of Word style problems could be eliminated. This
consisted of

- Exporting formatted shell documents.

- Cutting and pasting from SMV documents and artifacts into shells.

- Retaining Doors Word styles along with formatted shells.

- Deleting old shell documents in Doors.

- Importing revised Word documents into Doors. And,

- Making new documents in Doors the revised documents.

This work around worked for straight text; however, when importing Word tables
into Doors, the Module and/or Object capabilities seemed to create undetermined
results in the final Doors document.

3. SMV PRIOR TO DOORS REQUIREMENTS
MANAGEMENT

This section describes requirements engineering prior to using Doors. After just
reviewing the Doors product and not yet having applied the product, considerable
improvements in SMV requirements engineering could be obtained.

3.1 Documents and Requirements of SMV
Figure 1 SMV Directory Structure

2 3 wmsg) hakpez? o a2
) adiin i) bakigze = 7 west Most_fles
% Brn Mebncs Buider - Mansgs Busnass Perl) bakigzg) nare Filas
17 Business performancs softvsre solotions F) baki2Geve 22 hop _fles
|2 Eusiness performance softuare sobtions F) hakfanz 3 (3 wnilordd
2y deansgr) bakiaa) BSERA sl Sofbwers Dngreerng Hessarch Grous
3 Davso L002 0} FARC Information Sciences and Tedhnologies Laborate
B3 b At iE2%2pm = () Softwarg Matrcs Stes_fies
) Google Sea Frwssre Wik visualzot o melrie-sites-na ks

i) instalidr
) Tek-Tips - Falated Forute For Bria Technoiogy soh.

) temp
E £ '«bEFndSbu.p_‘
+ |2 ek Mgt _files

Softwars Miakdcs visuaizath) metrics-stes-nawe_fles

[T e Codection of Computer Soence Bhiographi=s fia

ol -

T S0R .

= =3 b = 3 rid
L) a5 10ey) Brio Metrics Eulder - Manage Business Performano
) babasi? o Busiess pesformanoe softears soictons from Brin
) bas1?) Busiress perforsancs sofbears solubans from Brio
L bakDala) Googls Saarch Softwane Metrics visusliestion for 5
7 baknals) Google Search Softeans Metrics visaabzation_filas
L) hakf1820) images
e) IMTERCHE 93 Teheicsl Yideo Program_files
) baklizb]
L) bakfiz?) a2

In figure 1, the directory structure of SMV is provided in a Windows
environment. In point 1 indicated, note that there are several different kinds of
SMYV artifacts. In point 2 note the revision control system of SMV is manual and
consists of milestone and/or key date backups of the entire software under
development. Note in point 3, that there are builds of different SMV prototypes.
Requirements are captured and should be linked in all areas. In table 2 following

C:\Westmost\wmO010\assign3\a3_doors.DOC Page 7 02/24/04

the requirements are listed without using the Doors indexing system. These
requirements are listed in the order of prioritization by the stakeholders.

Table 2 SMV Requirements With-out Doors

Requirement Sc | Rationale
al
e
al Capture 'raw' statistics of code Core functionality of a visualizer. Presentation
productivity of these statistics is not necessary if they can be
viewed appropriately.
a2 Drill down on visualized abnormalities a | Provides a way of viewing the source code to
inspect whether an abnormality is real or
imagined
a3 Selectable targets of visualization a | Provides a way of selectively visualizing.
including author, variables, language
constructs, words
a4 View change events consisting of change a | Core operation of a visualizer. It major change
of author, code modification, other events can not be viewed then you do not have a
visualizer.
bl Capture significant views for presentation | b | Provides a way of using visualization for human
and discussion resource issues and/or maintenance issues.
b2 Easily retrieve SQRs for visualization b | Provides a way of importing SQRs for
visualization
b3 Highlight abnormal change events b | Provides an automated way of viewing change
events
b4 | Interface to version control software such | b | Provides an easy way of capturing change
as PVCS, MKS, Rational, other events of interest.
b5 | Provide ad hoc reporting of statistics not b | Provides a way of retrieving statistics of interest
just pre canned statistics by passing out-of-the-box visualizations.
Allows for more custom visualizations.
b6 | Provide feedback on the visualizer b | Assists a visualization user to make appropriate
operation use of the visualizer.
b7 Provide rapid learning of visualizations b | Assists in moving up the learning curve faster.
including legend and titling
b8 Provide snap shot capability for before b | Provides a way of measuring changes in terms
and after timed views of percentages at a macroscopic level.
b9 Set colour codes for author, for language b | Provides a way of distinguishing statistics of
construct, for variable interest in a visual form.
bl0 | View a whole SQR application not just a b | Provides a way of managing application report
program suites
bll | View programmer language style b | Provides a way of viewing particular developers
way of using the language.
cl Export visualizations to other office ¢ | Provides a way of enhancing the visualization.
productivity tools such as Visio, Word,
other
c2 Interface to developer tools such as ¢ | Provides an easy way of making changes after
TextPad, Brio Report Builder, other viewing a change event.
c3 Provide thin client for visualization to the | ¢ | Provides a way of managing SQR development
web in multiple geographic locations.
c4 Set level of view such as an elevation ¢ | Provides for scalability of view. Results in
ascend/descend settable levels of granularity.
c5 View consistency of programmer style ¢ | Provides a way of viewing language style
independent of kind of language construct.
C:\Westmost\wmO010\assign3\a3_doors.DOC Page 8 02/24/04

c6 View history of visualizations including ¢ | Provides a way of making routine a series of
archiving of significant visualizations visualizations say from year to year.

dl Convert visualizations into statistics or d [Provides another media for understanding
statistics into visualizations underlining change events.

3.2 Traceability and Tracking

An important concern of software development is the relationship of the code to
requirements. The evaluation copy of Doors that was used did not provide
interface modules into revision control systems. In any case, SMV followed a
homegrown revision control system as demonstrated in the directory structure.

Figure 2 Review of Visual Basic Code

Hucon 21 frmiptiors. Frm {3 Frmsplash.fes

Hw| g B3 FrmDiCreateConnection.f [fritain, frx

B UiPros v £3 Froabain, Fron = FRMICON,FRY

B Frojectl ke 3 FRMLOC FRH = Frmbocument frs

1§ containes . vbp I3 FRMICON, PR I Pk ad fre
Mok das, b [FrviiteLoad frm |5 FrinBromasar, Fra
Modda? e B3 femDincument. fron ;l‘; Freilct fra

Hmodue bas 3 Fronislag, frn = Drmep s

& pssmodul: bas 13 frrDimpend fm [B] racmL vty
conbovebaad, bas 21 frmDatacnd. frm 2] P v
WEORE GG 9. Frmireate Conrection, Frm 5] Froject b

Brwocore ves £ FrocBponmsir. frm [] container b

=2 sk frm 51 Frmapplication, fres] veomLtar

2 PoplipCodewithithorCoks,. 13 frmion Frm] Peatzon0.scp

3 Pepliatode frm 3 Frmaons frmn || PCad 19en 500

3 Pakeolor Frm B3 Rlezcan. Frm £ Applcation Setup Weard (23

£y chFrmatats. frm I3 Carmep.frn = mescoerscc

% Larwchimn frim B3 CoordsFrm [

3 FrmvisusbefithuthorColer Fre (24 containerbed frm = frmsplazhfee,ong

% Frvtvisusl frm t;-“"'"“"'“"-ﬁ""" = Frm&plesh.frm.org

4, Frnsyskarm. frmn ;ﬂjmm-ﬂ'-‘f = ucrreyocs

I FRMETATS FRM = Paeokr fri % wzkvsoR 1 MoE

B, frmSalesh.frm gFrm'ﬂsl:el'-'.'thw.thclﬁ:\br.'EJV._-,-‘.-WW =il

13 Frenpregram. frm f-ggFrrrMsual.fo S vsoRLH0E

23 Frnptions. frm | Frmepach.fra 2] corveainer fog

[Frnsplash. foe 48 WisualBagc ... S/I0J0Z 542 AN
:,_ﬂfrml-\ah.fg 1268 MsualBasc ., 10002 1155 P
(= PRI, R 28 Visoel Badie ., SIZEN0E 5035 AM
éfrrnl:-o-cu:zr't.l‘r-: ITED sl Bamc .. OP2TI02 634 AW
5 Frenfuk aGnd Frs KB Wil Badc ... 5/E0/0Z 25T aM
:jﬂff-mrlri:mser.fu 1S Ml Baic .., OFTRIDZ 11:56 AM
= Pt fr 2 Wisosl Besic ., DOEI0Z 6035 AM
= Drmap s 1E8 Wiswal Basic .. B27/02 205 P
|B}vscmvam ZER WEWFle 10202 2:33 FM
|* U vt 1KE WEWS Fin ONRNE 6:0E P
5] Project. v 0KS YEW Fia BIIEI02 11:46 P
_-'qunbun:r.uhw 1E8 NEW Fi= 402 12042 P
] veomLTaT 38 TestDotum.. S/10/02 2:55 4M
:*]Ffaia'.lil.'l-stt 103 KR SOR Source,.. BIE0Z 71T AM
\ﬂPCMI'?W.SQF 100ES SOR Soroe.,, BRZR02 7117 AM
gﬁ.ﬁnpkuhm Setop Weard (20 1E8 Shorbout SITA02 720 AM
= mascoprscc 1EA SCCFle 9/18/02 8:53 FM
Evacm 6B ResouroeT.. SI0/02 2:55 AN
= frmSpkshfre.ong KB oRaFie HA0J02 507 AM
gfnnip'-aah.ﬁ'm.nru TED ORGFie Sr002 5:07 AM
= uProgozs 198 OCaFle Bi2902 7125 aM
W WEVEORLMDE 153KE Mirosoft A.. /1502 13 FM
%vaq:r\:dw sfh 1257408 Mirosoft A, 100202 6:53 AM
‘EHWI. L] 1168 Miresoft A, SAFI02 4:53 AW
|®] coricairer fog 1EA LOG Pl A/1aj02 6:01 P

In figure 2, a view of Visual Basic code artifacts is provided. In particular, note
the file extensions frm and bas. These are forms with code and subroutine code.
SQR is another languages source code artifact and an extension. Note that mdb is
So what is the relationship between say the
requirements of SMV and the code of SMV? This relationship will be explored in
the next figure. But through out this report, requirements will be linked from
elicitation until coding. Hence the mentioning of code extensions.

an Access database extension.

C:\Westmost\wmO010\assign3\a3_doors.DOC

Page 9

02/24/04

Figure 3 Relationship of Requirements to Software Products Without Doors

i il Capaare Tl sLaabicir of Cidd

o Eelbriatibe nangens of WERGLLLMLION,

i i badig ﬁﬂm-%i,%-‘-
| CTEE, wonds

[| View duatige eress casbTing of dungx
I of wEsoE, dodi dif , wllwd

il Capmare siguti ik wievrs for PO esambalon
I izl L p o

(55| sy rvrins S0Fs S vamaimin
i _Lihiig wopnsl o s
{54 | Tbertss to weorion cossred cotmes coh
': a5 FYCE, MES, Facsoeal, ol

B3 | Fronids s boe oy o =
b L (1 R o o]

BE | Prievids Redbiik on the viiailiss

11 Proesids arogs ahet cxgpalbalidy Ef badons

1 wrd 38 EEned wee

|0 Ean ol cedie Bod calbe, o Lisgiiga]
I corertrocl, for vt ls

[l | View oWl E05 ml.l.-:u;-:h'.-.uj.l.nt;ﬁ_

| prodacLiviny toels pd, i Viido, Woed,

| othid

IEFHE T e e

| TuszPul Eris Ripal Buildey, othad

| B Frowicls i e for wiabisalion b e

v
ik St levme] ol v Soch i i tleanthom
| wid sl ez
fof | View Tanony of vimuissions Bohidng
| wrchdirey o f ripafh sht vinpdisc e

il Cerwesrt yemskankanes B0 Al or

Sl ormfrm
PopUptode'dtthithonZok,.,
33 PoplipCode.frm

= Pak-ofar.Frm

% ok rmstabs. frm

3 LaschSm

1™ Frvvsusiisithiusthor Colar.frm
™ Frovtsusl Frm

3 Fronsystam, frm
FRHSTATS.FR=

= frmSalesh. frm

2% Frnperogram.frm
Fravdphaanis. frm

= PO raste Dorrection, frm
= P, frm

53 FRMLOC . FRM

™ FRECOM.FAM

3 FrvFilsLoad, Fre

™ Frmbvooumnent.Fm

2 Frmbslog frm

2% FrmDepend frm

23 FronDaak aiGeid, Fan

M frmCreskelonneckion frm
=% Frmiliroves=r Frmi
Fronappiication. fam

2% Frmapp.frm

B, Frrntdecat, Frin

™ Fiescan.frm

= Dirmapfrm

2% Coords.Frm

23 conbairerbad, Frn

3 oorkaiver frm

The above figure relates requirements previously given (1) with code of SMV(2).
Later the same relationship will be provided in Doors. However, this relationship
was never done in the original SMV project at this level of detail. Only at the end

user level of detail.

3.3 Configuration Management

Versioning builds, prototypes, and code control in SMV consisted of the directory
structures previously shown. Requirements were never linked across directory
structures or across artifacts. Requirements were linked only in the views of the
project manager and the developers. This did not include the user community or

the user group testers.

requirements validation was never shown.

SMV was presented at user conferences; however,

C:\Westmost\wmO010\assign3\a3_doors.DOC

Page 10

02/24/04

4. SMV WITH DOORS

This section of the report is the main body of original requirements engineering work. It
consists of a collection of activities performed and comments made when applying Doors
to SMV.

Doors is document oriented within its proprietary database as opposed to say graphic
oriented. (Not used with SMV was UML graphic techniques. Comments on whether
Doors handles UML linking other than use cases can not be made in this paper) So many
of the images used in this report would be special cases in Doors. In the demonstration
package used for SMV there was not any import of Microsoft PowerPoint presentation
file structures possible. It is expected that this exists but no work arounds were
developed for the version of Doors provided.

Templates within Doors were excellent for standards building and meeting. These
templates provided information content and structure. However, the standards did not
always translate into Microsoft Word styles and required good editing in order to match
for Doors import. Indeed Microsoft Word documents that were created independent of
the given standards and had their own style sheets were difficult to import into Doors,
especially Word documents with imbedded tables.

4.1 Conversion to Doors

Figure 4 Doors Directory Structure

| Training: /Software Metric Visualizer _Final - DOORS
File Edik Wiew Favorites Tools Help

EEEAEOs | I BE %8 B &

Favorites:] LJ (BlsE 1Tl | /S aftare Metric Yisualizer Fingl
+ I% Copy of EasyStart Marme | Tvpe | Description
+- [Easystart [code Artifacks Falder
+[E8 Software Metric Yisualizer [CdUser Requirements Support Docu... Folder
—1-428 Software Metric Yisualizer _Final| | md H g
g Code .ﬁ.rtll’..acts =] Software Cesign Faormal Sofbware Design
3 Lt F‘jequwernents UpROrE E"Technical Requirements Formal Technical Requirements
a: % Spotts WAy vehide 52 E"Test Ikems Faormal Test Ikems
E"User Requirements Farrnal Lser Requirements

The Doors directory structure can model the Windows directory structure and this
became an important way of visualizing SMV conversion to Doors. It also
provided some ease of learning. Security prevented some forms of directory
matching.

C:\Westmost\wmO010\assign3\a3_doors.DOC Page 11 02/24/04

Figure 5 Example Start of 11 page Doors User Requirements Document

| Formal module ‘fSoftware Metric ¥isualizen _Final/User Requirements’ current 0.0 - DOORS

File Edit Wiew Insert Link Analysis Table Tools User Help

HESE| & B v S5 =R T |
|Standard wiEm ﬂ |.°.II levels ﬂ s Al £ B %J, E i
=+ User Reguirements [o

| Uzer Requirementz

=1 Introduction
1.1 Purpose of the Document: This document is used t
=-1.2 Scope of the Software; It became apparent early
1.2.1 SMY Report Objective ;s This document is a
1.2.2 SMY was orginally written for Westmost 099
- 1,3 Definitions Acronyms, and Abbreviations
1.3.1 SMY: The software metric visualizer project i
1.4 References: [Booch2002] Grady Booch Quality Sol
1.5 Overview of the Document
= 2 General Description
2.1 Product Perspective: SMY is a source line visualizel
-1 2.2 General Capabilities: The general capabilities lisked

& delivery manager for Brio professional services gets tasked with r:
data warehouse that is being fed data from a newly installed ERP sy:
capability. The timeframe for implementation is 4 months and the nu
global locations. & repott suite approach is requited using a system
enforcing of QR development standards would elongate the 4 mond
their own programming style to complete their individual 30R assigr

2.2.1 d1 Convert visualizations into statistics or st
2.2.2 cf Wiew history of wisualizations including arc
2.2.3 5 Views consistency of programmer style: Wi
2.2.4 o4 Set level of view such as an elevation asc
2.2.5 c3 Provide thin client for visualization to the
2.2.6 c2 Interface to developer tools such as Text
2.2.7 c1 Export visualizations to other office prod
2.2.8 bl1 Wiew programmer language style: Yiew |
2.2.9 b10 Yiew a whale SR application nok just a
2.2,10 b8 Set colour codes For author, For languac
2.2.11 b Provide snap shat capability For before .
2.2,12 b7 Provide rapid learning of visualizations ir
2.2,13 bé Provide feedback on the visualizer oper.
2.2,1% bS Provide ad hoc reporting of statistics no
2.2.15 b Interface bo version control software su

oLk Lo

R e T S

12 2.5 Operational Environment
The Windows operating systeth environment with possible client/se
operational envirotument.

13

2.6 Assumptions and Dependencies
A gsumptions and dependencies of SMV include a Windows 95 opes

Demonstration of the Human Computer Interface of
Software Metric Visualization Setup

from John James Willzon and Christopher Donald Wills on; <hitpaiie
hudlt October 03, 2002
Installation:

* Logonto (Windows 2000, Windows NT, or Windows 981w
ordet to install the software successfully

|»

-
‘

The above figure is provided to show the reader the capture of SMV requirements
within the Doors product. Retention of the SMV requirements indexing is also
shown in order to make the translation from before and after Doors. Further, the

requirements

indexed (2.2.1 dl for example) were the first prototype

requirements. In the second spiral of SMV development, end user tasking was
used as high level requirements. Some features of the final SMV tool never made

it to any of the three requirements' spirals.

The use of a legend on each

visualization of SMV just appeared as a nice-to-have feature and was never

captured as a requirement.

C:\Westmost\wmO010\assign3\a3_doors.DOC

Page 12

02/24/04

Figure 6 Initial Doors SMV Documents

-]

| IStandard wiEw

#1- 1,3 Definitions | !Standard F

1.4 Reference i

-+ 1.5 Cwerview of = HStandard wig

CEI=N

File Edit Wiew Insert Link Analysis Table Tools User

=2 General Descriptig
2.1 Product Pe

.2.2.8b11
2.2.9b10
22,1009 3
2,211 b8 R
221207 R
2.2.13b6 A

i

[= Software Des

i lStandard WiEw

(= Test Irems
=1 Test Plan

Help
BE® RV X = s
;‘ HP." levels ;“ :}'-E :.'r';:l;.‘ .';;f?

i ’Standard WiEw

1.1 Introducti
1.2 Test Trem:
I+ 1.3 Features
1.4 Features
- 1.5 Approach
- 1.6 Iker Pass|
- 1.7 Suspensi
1. Test Deliv
1.9 Testing T
- 1,10 Envirani
- 1,11 Respons)
1,12 Staffing
1,13 Schedul
1,14 Risks an
i 1,15 Approy 3
- 2 Test Designs
-3 Test Case Speci
-4 Test Procedure:
L5 Test Reports

:1 Prograrm Marne Ao Code
- 1.1.1 Safform.frm -
- 1.1.2 PopUpCodewit 1 Ide
S PopUpCade. frr i 11 Pri
1,14 Palcolar Frm
~1,1.5 aldfrmstats.frn #1118
-+ 1.1.6 LaunchFrm.Frr = 0 112F
1,17 Frm¥isualiwithd
i 61
- 1.1.8 Frmyisual. frm 113F
1,19 Frmsystern.frm 82 114F
+1,1,10 FRMSTATS.fr —
i 63
1.1.11 Frmsplash, frr 1150
1.1,12 Frprograrn.F 64 116L
1.1.13 FrmCiptans. fri 6 117F
1.1.14 FrrMDICreake
1,115 FrrMain. Frm 6 118F
1.1.16 FRMLOC Frmi 6 1191
1.1,17 FRMICOM, Frre
1.1.18 FrmFileLoad F & 1.1.10
1.1.19 frmDacument 69 1111

The above figure shows the many SMV documents and requirements that were

captured and entered into Doors.

The extreme left-hand document shows the

initial requirements. The next pane shows technical requirements using a selected
industry standard template. The middle pane shows attempts at graphic artifact
requirements capture within the Doors product. The next pane shows testing and
revision of some high level requirements to include end user task scenarios.
These came directly from the user group prototype testing. The final pane shows
the code developed and listed within the Doors product. Note the frm before the
program name is the same frm of figure 3.

C:\Westmost\wmO010\assign3\a3_doors.DOC

Page 13

02/24/04

4.2 Identifying and Capturing Requirements

Using the work around previously discussed of exporting a style sheet and
importing the revised style sheet, it became very easy to enter SMV requirements
that had been previously typed. The ability to enter requirements directly within
the Doors product was also performed and this too was quite easy. The figure
below shows some of the end user task examples entered as requirements. These
were originally not identified as requirements but through the use of Doors
became easy to measure requirement benchmarks.

Figure 7 Doors Capturing of SMV Requirements

| Standard view T [|Allevels v | gEc o W Ey | EE W
=I- Test Items sadl i l[o] | Test ltems
% Teisthla: it 28 An 30R developer who has written 100 K1LOC s in 12 30Rs for a large hospital over 2 yeats wn
Cnartetn these 30Fs into an application suite. He would also put his includes' in the application suite.
LoTestlrems take a snap shot of the code. When recuired to make changes to the application suite he wou
1.3 Features to be Teste the estimated changed lines of code in the code database and take another snap shot. The st
=131 would provide him with an estimate of the effort to make the changes and help him familiarize |
=-1.3.1.1 what is required. He would deill down into individual 30z as required to see if there are area
<1.3.1.1.1 Re inspect.
An SQR T 20 o .
LN s 1.3.2 Revised Task Example 2:
& project lead fo 30 A project lead.for glmge commputer vendor who maintaing SQRS retmotely throughmit North &
5 1.3.3 Revisad Task E wiould nowr build himsgelf s dashboard of developer 30R activities. The 3 to 10 dewvelopers he
: working for him would submit their 30Rs daily to the code database. As aresult he would be
& delivery manac T T R . 3 %
1 1.3.4 Revised Tack E code activity by developer by application domain at least on a daily basis. He would also be
: I.D.F | o developer language use of 30E. He would take snapshots of the state of 30Rs when his org:
ree.anccle Qk zold a maintenance service and snapshots of when his developers did maintenance activities.
=135 Rewse Tashh these snapshots he would know developer petformance and maintensnce effort on any given
A delivery manat 20Rs. Bimilar snapshots would oo when he was being asked that he upgrade 30Rs for s
1.4 Features Mot to be T changes for an ERF system.
1.5 Approach s
K| :
1.6 Ttem Pass/Fail Criteri 1.3.3 Revised Task Example 3:
1.7 Suspension Criteria 32 A delivery manager for a 30R softwrare boutigque who needs to cotrvert customers from anoth
1.8 Test Deliverables wiitet would not make extensive uge of SMV. He could use the other language feature of S
1.9 Testing Tasks wopld recuire that thTe othet language had flat file capabdity. Although the author and Darrin
PR P [Iiller20027 havve writternn SOL Plus to 30K, consrerters: 30R to 30F converters: and PLAZ0OL t

4.3 Features of the Doors tool used

Figure 8 Use of Doors Wizards

j |F\II levels ﬂ i

cE BT BW

|5tandaru:| et

+ - User Requirements

| Report Wizard - DOORS

e rec.
W eatn
Start sze this wizard to create a report for thiz module.
Salaia e Reports are ugeful if pou often want to print the same view aof the
module. The report defines the view and the page setup. e reou
Seled a page setup i
Enter report name
have
Finish lists s
Wim
C:\Westmost\wmO010\assign3\a3_doors.DOC Page 14 02/24/04

Not all features of the Doors tool were used. However, there were some notable
features used. The previous figure shows the use of Doors wizards. The wizards
provided considerable enhanced capability. Reports directly out of Doors could
be produced. These reports in rich text format could be easily edited and
highlighted with revised text. Originally it was envisioned that this report would
be produced within Doors itself. Several problems with Doors handling of
graphics prevented completing the report within the timeframe available.
Exporting and importing of rich text formatted documents in multiple layouts was
very easy as is shown below. All requirements could be captured in multiple
ways and imported and/or exported as needed.

Figure 9 Use of Doors Import/Export of Rich Text

+ - Code

D | Code

71 Identification

3% 1.1 Program Name

2 1.1.1 Sqlform.frm

60 1.1.2 PopUpCodeWithAuthorColour.frm
61 113 PopUpCode.frm

62 1.1.4 Palcolor.frm

| Export RTF - DOORS E3
|C:\westrmostuwmO] Dhassign3WCode it Browse...
L apot: |ngk ﬂ

v Include DOORS Heading Mumbers

4.4 Requirements Project Flow

Doors enforced requirements project flow. Although the systems development
life cycle of SMV was spiral, Doors had no problems capturing requirements in
all 3 prototypes and in linking these requirements.

4.5 Tracing Requirements and Linking

One of the most exciting features of migrating SMV to Doors was the tracking,
tracing, and linking of requirements. The figure below shows some of the links
that were developed using the Doors product. This figure could be compared to
figure 3 "Relationship of Requirements to Software Products without Doors".
This is truly a way of providing insight into requirements engineering that would
not exist with out some form of requirements management automation.

C:\Westmost\wmO010\assign3\a3_doors.DOC Page 15 02/24/04

Figure 10 Doors Tracing Requirements through to Code

| Traceability Explorer - ‘fSoftware Metric ¥isualizer _Final/User... g@g|

File Wiew

—- 2.2.17: b2 Easily retrieve SORs for visualization - Easily retrieve SQRs for visualization #
&+ 1.1.18: FrmFileLoad.Frm

-4 2.2.18: bl Capture significant views For presentation and discussion - Capture significar
&+ 1.1.8: FrmWisual frm
& 1.1.12: frmprogram.Frm
&+ 1.1.14: FrmMDICreateConnection. Frm
& 1.1.16: FRMLOC Frm
& 1.1.25: frmapplication.Frm

- 2.2.19: a4 Wiew change events consisting of change of author, code modification, othe
& 1.1.16: FRMLOC Frm
& 1.1.13: frmOptons. frm
&+ 1.1.4: Palcolar.frm

- 2.2.20: a3 Selectable targets - Selectable targets of visualization including author, vari
& 1.1.16: FRMLOC Frm

= 2.2.21: a2 Drill dowan on visualized abnaormalities - Drill down on visualized abnormalities
&+ 1.1.8: FrmWisual frm
&+ 1.1.3: PopUpCode.frm
& 1.1.2: PopUpCodetwithauthorColour Frm

- 2.2.22: al Capture 'raw' statistics of code productivity - Capture 'raw' statistics of code
& 1.1.10: FRMSTATS.frm
&+ 1.1.5: oldfrmstats.Frm
& 1.1.1; Sglform.frm

4.6 Verification of Requirement Completion

The requirements tracking would not be complete without analysis of how those
requirements relate and interact together. Here Doors again provided insight that
could only be accomplished prior to SMV being in Doors though extensive sweat
equity. If the preliminary analysis of the requirements had been used through
Doors, the spirals of SMV might have been better documented. For sure impacts
of requirements on the spirals would have created more managed spiral
development. Again, this was so readily easy to use that the value of a Doors
implementation might be justified on this insight alone.

C:\Westmost\wmO010\assign3\a3_doors.DOC Page 16 02/24/04

Figure 11 Use of Doors Analysis

= 1,|'Suftware Metric Visualizer _Final/User Requireme;] = £ =5 <+ = =

1.2

121

122

13

131

14

1.5

1.1.2 1.13
PoplUpiCodaWithlnthorColouw fim PopUpiCode fimm

1.1.1 1.14
Sqlform. fim FPaleolor.fim

1.1 1

Program Mame oldfimstats firn

l.la

L i L
1.1

RO OEDEED
Parpose of the Dommment .
Scope of SMYV .

SMV Beport Ohjective .

MV was orignally waitten for .

Defimtions Acronyms, and Lbbr .

Softerare Metric Vimalizez[.

Eeferences .
Ohverviear of the Doonment .
(reneral Deseription .

4.7 Not Enough Low Level Requirements

It became clear when moving SMV requirements to Doors that many
requirements were not fulfilled. But one of the more surprising results was that
the original SMV requirements were not detailed enough. Although SMV was
not completed using a project management package such as Microsoft Project, it
was completed using milestone progress reports and Gantt charts. So higher level
requirements were captured and to some extent managed. However; lower level
requirements or next spiral requirement details were never fully captured,
measured, or tracked. What a comment on the SMV project.

4.8 History of Requirement Changes Available

Since there were not enough low level requirements captured in SMV, this led to
the questioning of whether there was adequate history of requirement changes in
pre-Doors SMV. The answer is obvious. History of requirement changes was
never documented. It was captured within the stakeholders and in particular by
the user group testing and reviews. But it was never documented in even an

C:\Westmost\wmO010\assign3\a3_doors.DOC Page 17 02/24/04

informal sense. Again, a clear demonstration of the advantages of a requirements
management software tool. With respect to 'agile methods' requirements

management, this is clearly not well done with a code-and-go approach either.
[Eber2002]

4.9 DXL - Not for Everyone

4.10 Interfacing Out and Documentation

The following is a listing of whines and bouquets concerning the conversion of
SMV to Doors and some of the problems encountered that may be addressed in
other versions of Doors than the one provided for evaluation.

The conversion from SMV requirements to Doors did not require the use of DXL,
the Doors programming language. As a result, the only comment made is that
there may be features with direct applicability to SMV requirements that were
never tried. Doors is quite feature rich.

4.1 Microsoft Office Suite Products

Figure 12 Doors Bugs and Locks

Ll UYL 1 e [LIUser Kequirements Suppart Uoc -
—-25) Software Metric Yisualizer _Final E‘HCDCIB
[L3) Code Artifacts E—*Eﬂftk\!ﬁrﬂﬂ&siﬂn

RAADE

9
<7

You chose to end the nonresponsive program. DO0ORS.

The program iz hot rezponding,
Item /S aftware Metric YWizualizer _Final/Uzer Requirements locked [unsh
Da pou want b Please tell Mi ft about this probl

‘We have created an emor report that vou can zend to us. Swe will reat
thiz report a2 eonfidential and anarymous

To see what data this error report containg, click here.

Eancell Open Fead| &

Send Enor Repart Don't

Although mentioned earlier, the metaphors and related paradigms of Windows
and Doors clash upon occasion. Doors does not gracefully fail but attempts to run
a debugger that the end user has no access to. Further, the objects that Doors was
working on at the time become locked by the parent object owner and appear to
revert to earlier versions of the object. An alternative strategy would be to
identify the location in the object that had focus at time of failure. Further, Doors
objects do not retain sizing history of open views. They must be resized each
time opened. Again insertion into the propriety database is very large system
SQL like. This is not a problem once up the learning curve, but is counter to the
Microsoft Office Suite look-and-feel. (Even though under the wraps Doors might
be a Back Office application?) So a prioritized requirements list must be inserted
in reverse order, in order to get correct numbering. Exporting to Microsoft Word
did not work in Word format. However, it did work in rich text format.

C:\Westmost\wmO010\assign3\a3_doors.DOC Page 18 02/24/04

4.2 Use the Web

Doors information through the use of the Telelogic resource centre and through
straight web browsing was excellent.
through white papers and user group productions.

4.3 Compiled Help

The compiled help feature of Doors was also excellent in providing understanding
of the software. However, overview of requirements management could be better
done and the why of requirements management could have been better done.
Also, having to use the help indicated that the Doors product did not meet one of
the earliest major expectations - " ease of use and rapid learning of a tool such as
Doors with out the use of hardcopy or compiled help files and/or training."

5. CONCLUSIONS

Relevant information could be obtained

The table below provides a summary of improvements by Doors / Non-Doors comparison
on the SMV project. Note that not all features of Doors were used. Only those features
that were needed for the SMV project.

Table 3 Summary Improvements With Doors

Comparison | Pre- Doors Doors
Description
Capture of - Humans had to convert - Humans had to convert
Requirements requirements from requirements from interviews,
interviews, questionnaires, questionnaires, JADS, etc.
JADS, etc. - In addition there are templates that
- Only office suite represented industry association
productivity automation standards
- Doors had a decided edge in ease
of subsequent use as is shown in
this document
Tracing - Prior to seeing Doors the - Doors is absolutely better in that
Requirements only tracing of requirements the linking of requirements
was end user testing and end through multiple project artifacts
user memory was point and click.
Changing - Requires intimate - Because of the trace linking impact
Requirements knowledge of all system assessment is a matter of following

and Impacts

development life cycle
products including the code.

the linking and is very easily done.

Maintenance

- Market or user driven, not

- Easy to find relationships among

C:\Westmost\wmO010\assign3\a3_doors.DOC Page 19

02/24/04

of SMV

necessarily based on need.

requirements.

- Major revisions are subsequently
possible with their impacts
identified

Focused
Development
Effort

- Based on end user or
developer input

- Objectively based on agreed
prioritization.

- Development effort is scalable
with easier to identify budget high
water marks.

Assurance all

- Inrelating requirements to

- All requirements were linked to

requirements code it is obvious there are code and 'orphaned' code was
met missing requirements and clearly shown.

code not matched to

requirements.
Index of - Index and numbering of - Indexing was automatic. For Doors
Requirements requirements was manual testing purposes both numbering

and based on a 'home approaches were used and this showed

grown' system. the problems of a manual approach.
Linking of - Never done in original - Drag and drop linking!
Requirements project.

- Tedious after the fact
activity

Detection of
Requirements
Interaction

- Not readily possible. Relies
on intuition of developer.

- Absolutely clear, recordable, and
actionable.

5.2 Interface Improvements

It is clear from this report that some approach to importing and exporting should
be rethought within Doors for the novice or inexperienced user. A possible option
here might be to extend the excellent use of Doors wizards to check for
import/export document styles or templates. Since this is such an easy idea it is
likely available with an alternative version of Doors or from a third party after
market vendor.

5.3 Excellent Collaboration
Although not tried with SMV, the collaboration capability of Doors seems

excellent.
project.

Most developers would like to know their contribution to a given

Having requirement fan-in and fan-out complete with requirement

C:\Westmost\wmO010\assign3\a3_doors.DOC

Page 20

02/24/04

chaining, developers would be able to view their code production to requirements
met. Quite a concept for some low level CMM shops.

5.4 Change the Doors Metaphor

The Doors metaphor to the Windows environment is excellent. However, it needs
to be extended with other Microsoft Office Suite look-and-feel. Many customers
of the Doors customer base might be using alternative platforms including
alternative office suites; however, if rich text formatting is the interchange media,
then Doors should present it that way to the novice or intermediate user. The
spread sheet metaphor fits with many technocratic views of requirements
engineering; however, much progress in requirements engineering occurs through
the use of graphics, diagrammatic, and craftsman like approaches to doing
requirements management.

5.5 Overhead versus Efficiency

The author's original concerns in using a product such as Doors to do
requirements management as being overhead intensive with out any pay back
were wrong. Using SMV with Doors it became very clear that the comparison of
pre-Doors and post-Doors requirements was not a fair comparison. Doors
provides a level of insight that is not readily apparent in the crush of doing
projects. This insight could translate into better products and more timely
projects. There is a role to fill by requirements management automation tools that
has applicability even on small projects.

5.6 Putting this Document in Doors

However, the Willson's test of using Doors as a requirements management tool
for all projects, requires that this document be readily imported into Doors. And
that during that importing that the requirements are extracted from this document
for the son of SMV project. Further the graphics and tables used be imported
also.

C:\Westmost\wmO010\assign3\a3_doors.DOC Page 21 02/24/04

Appendices
A. References (This document)

[Eber2002] Armin Eberlein & Julio do Prado Leite,
Agile Requirements Definition: A View from Requirements Engineering,
http://www.enel.ucalgary.ca/People/eberlein/publications/index.html

[KotoSom1998] Gerald Kotonya & Ian Somerville, Requirements Engineering:
Processes and Techniques, John Wiley & Sons Ltd, West Sussex, England

[Tele2003] http:// www.telelogic.com/

B. References (SMV exported from Doors)

Pasted from exported Doors User Requirements Document

"1.4 References"
[Booch2002] Grady Booch Quality Software and the Unified Modeling Language,
Rational Software Corporation, 2002, <http://www.rational.com/>

[Brio2002] Brio Performance Suite 8, Brio Software <http://www.brio.com/>

[Burton1994] Peter Burton SOR User's Guide and Developer's Kit 1994 MITI Long
Beach, CA

[Dask1992] Michael K. Daskalantonakis A4 Practical View of Software Measurement and
Implementation Experiences Within Motorola 1EEE Transactions on Software

Engineering, vol. 18, no. 11 (November 1992), pp. 998-1010.

[Dbminer2002] DBMiner, DBMiner SX 2002, <http://www.dbminer.com/>

[Dumkel1999] R. Dumke Metrics Tools - An Overview. Metrics News, 4(1999)1, pp. 21-
28

[Eick1992] S.G. Eick; Steffen, J.L.; Sommer, E.E.: Seesoft -- A Tool For Visualizing Line
Oriented Software Statistics. IEEE Transactions on Software Engineering, 18(1992)11,
pp- 957-968

[Eick1996] Thomas A. Ball and Stephen G. Eick. Software visualization in the large,
IEEE Computer, April 1996, pp. 33-43.

C:\Westmost\wmO010\assign3\a3_doors.DOC Page 22 02/24/04

http://www.telelogic.com/

[Emden2002] Eva van Emden, Leon Moonen, jCosmo - Java Code Smell Browser Tool,
<http://www.cwi.nl/projects/renovate/javaQA/>

[Florac1999] William Florac and Anita, Carleton, Measuring the Software Process,
Addison Wesley, Reading Mass.

[GM2002] FQS Poland, User Manual, Ghost Miner, 2002,

[Gutwin1999] Carl Gutwin, Visualizations of Interaction, Technical Report 99-1, HCI
Lab, University of Saskatchewan, 1999

[Knight2000] Claire Knight, System and Software Visualizations, Handbook of Software
Engineering and Knowledge Engineering, 2000, <http://www.durham.ac.uk/>

[Kuh1994] I. Kuhrau A Tool-Based Analysis of Borland C++ Master’s Thesis,
University of
Magdeburg, February 1994.

[Landres1999] Galina Landres and Vlad Landres SOR in Peoplesoft and Other
Applications 1999 Manning Pulbications, Greenwich, CT

[Miller2002] Darrin Miller Harnessing SOR Brio Software User’s Conference
November 2002, <http://www.brio.com/>

[Mellen1998] Don Mellen SOR Programmer Reference 1998, Ray Ontko & Co,
Richmond, Indiana

[Norman1990] Donald Norman, The Design of Everyday Things, Doubleday, New York,
New York

[Nielsen1999] Jakob Nielsen Interfacing with Jakob Nielsen June 1999
<http://www.useit.com/>

[Qsm2002] QSM Company, The SLIM Software Tool Suite, 2002,
<http://www.gsm.com/>

[Sgi2002] Silicon Graphics Mindset , 2002, <http://www.sgi.com/go/mindset/>

[Sorenson1993] Boloix, G., Sorenson, P.G. and Tremblay, J.P Software "Metrics using a
Metasystem Approach to Software Development", International Journal of Systems and
Software 20, 1993: 273-294.

[Swanson2001] Gregory Swanson and Lee Globus Visualization for a Graphical
Programming Environment, Nielsen 2001, <http://www.tslice.com/>

[Tao1999] Xie Tao, Huang Huang, Xiangkui Chen Object Oriented Software Metrics
Technology 1999 Ricoh Company Ltd. Tokyo, Japan & Software Quality Evaluation
Group Peking University

C:\Westmost\wmO010\assign3\a3_doors.DOC Page 23 02/24/04

[Toth1996] R. John, J. Madhur, R. Stewart, K. Toth, Software Quality Metrics Process
For Large Scale Systems Development, 1996 INCOSE Symposium, July 1996

[Willson1998] John Willson, Stephanie Crafford U.S.4. Computer Consulting - For
Canadians and Other Aliens, 1998, DSS Ltd. <http://www.dssltd.com/>

[Willson2001] John Willson EXtreme SOR Programming, Unpublished Brio 2001
presentation, <http://www.dssltd.com/whitepapers/>

[Wong1996] Kenny Wong On Inserting Program Understanding Technology into the
Software Change Process Fourth Workshop on Program Comprehension (WPC 1996)
[Wong1999] Kenny Wong The Reverse Engineering Notebook, PhD. Thesis, Department
of Computer Science, University of Victoria <http://www.cs.uvictoria.ca/>

C:\Westmost\wmO010\assign3\a3_doors.DOC Page 24 02/24/04

	ABSTRACT
	�
	1. INTRODUCTION
	1.1 Requirements Management
	1.2 Why SMV - Software Metric Visualizer
	1.3 Approach to applying Doors to SMV

	2. DOORS
	2.1 Evaluation Criteria of Requirements Management Solutions
	2.2 Additional Non-Functional Requirements Management
	2.2.1 Installation of Doors
	2.2.2 Features expected and not provided

	2.3 Subsequent approach to SMV

	3. SMV PRIOR TO DOORS REQUIREMENTS MANAGEMENT
	3.1 Documents and Requirements of SMV
	3.2 Traceability and Tracking
	3.3 Configuration Management

	4. SMV WITH DOORS
	4.1 Conversion to Doors
	4.2 Identifying and Capturing Requirements
	4.3 Features of the Doors tool used
	4.4 Requirements Project Flow
	4.5 Tracing Requirements and Linking
	4.6 Verification of Requirement Completion
	4.7 Not Enough Low Level Requirements
	4.8 History of Requirement Changes Available
	4.9 DXL - Not for Everyone
	4.10 Interfacing Out and Documentation
	4.1 Microsoft Office Suite Products
	4.2 Use the Web
	4.3 Compiled Help

	5. CONCLUSIONS
	5.2 Interface Improvements
	5.3 Excellent Collaboration
	5.4 Change the Doors Metaphor
	5.5 Overhead versus Efficiency
	5.6 Putting this Document in Doors

	Appendices
	A. References (This document)
	B. References (SMV exported from Doors)

