
1

Requirements Management of the

"Dashboard Software Metric
Visualization for SQR" Project Using

Telelogic's Doors Software
April 2003

Prepared By: John James Willson
Prepared For: Prof. Armin Eberlein

Westmost 010 Course

C:\Westmost\wm010\assign3\a3_doors.DOC Page 1 02/24/04

Table of Contents

ABSTRACT ...3

1. INTRODUCTION ...4

1.1 REQUIREMENTS MANAGEMENT...4
1.2 WHY SMV - SOFTWARE METRIC VISUALIZER ..4
1.3 APPROACH TO APPLYING DOORS TO SMV...5

2. DOORS...5

2.1 EVALUATION CRITERIA OF REQUIREMENTS MANAGEMENT SOLUTIONS ...5
2.2 ADDITIONAL NON-FUNCTIONAL REQUIREMENTS MANAGEMENT ...5

2.2.1 Installation of Doors ...5
2.2.2 Features expected and not provided ...6

2.3 SUBSEQUENT APPROACH TO SMV ...6

3. SMV PRIOR TO DOORS REQUIREMENTS MANAGEMENT..7

3.1 DOCUMENTS AND REQUIREMENTS OF SMV ..7
3.2 TRACEABILITY AND TRACKING ...9
3.3 CONFIGURATION MANAGEMENT ...10

4. SMV WITH DOORS...11

4.1 CONVERSION TO DOORS ..11
4.2 IDENTIFYING AND CAPTURING REQUIREMENTS...14
4.3 FEATURES OF THE DOORS TOOL USED ...14
4.4 REQUIREMENTS PROJECT FLOW ..15
4.5 TRACING REQUIREMENTS AND LINKING..15
4.6 VERIFICATION OF REQUIREMENT COMPLETION...16
4.7 NOT ENOUGH LOW LEVEL REQUIREMENTS...17
4.8 HISTORY OF REQUIREMENT CHANGES AVAILABLE ...17
4.9 DXL - NOT FOR EVERYONE ..18
4.10 INTERFACING OUT AND DOCUMENTATION ..18

4.1 Microsoft Office Suite Products ...18
4.2 Use the Web ...19
4.3 Compiled Help ...19

5. CONCLUSIONS..19

5.2 INTERFACE IMPROVEMENTS ..19
5.3 EXCELLENT COLLABORATION ...19
5.4 CHANGE THE DOORS METAPHOR ..21
5.5 OVERHEAD VERSUS EFFICIENCY..21
5.6 PUTTING THIS DOCUMENT IN DOORS...21

APPENDICES..22

A. REFERENCES (THIS DOCUMENT) ...22
B. REFERENCES (SMV EXPORTED FROM DOORS)..22

List of Figures

FIGURE 1 SMV DIRECTORY STRUCTURE ..7
FIGURE 2 REVIEW OF VISUAL BASIC CODE..9
FIGURE 3 RELATIONSHIP OF REQUIREMENTS TO SOFTWARE PRODUCTS WITHOUT DOORS..10
FIGURE 4 DOORS DIRECTORY STRUCTURE...11
FIGURE 5 EXAMPLE START OF 11 PAGE DOORS USER REQUIREMENTS DOCUMENT...12

C:\Westmost\wm010\assign3\a3_doors.DOC Page 2 02/24/04

FIGURE 6 INITIAL DOORS SMV DOCUMENTS...13
FIGURE 7 DOORS CAPTURING OF SMV REQUIREMENTS ..14
FIGURE 8 USE OF DOORS WIZARDS...14
FIGURE 9 USE OF DOORS IMPORT/EXPORT OF RICH TEXT..15
FIGURE 10 DOORS TRACING REQUIREMENTS THROUGH TO CODE ...16
FIGURE 11 USE OF DOORS ANALYSIS...17
FIGURE 12 DOORS BUGS AND LOCKS...18

List of tables

TABLE 1 DOORS DESCRIPTORS APPLIED TO MICROSOFT OFFICE PRODUCTIVITY TOOLS ..6
TABLE 2 SMV REQUIREMENTS WITH-OUT DOORS ..8
TABLE 3 SUMMARY IMPROVEMENTS WITH DOORS..19

C:\Westmost\wm010\assign3\a3_doors.DOC Page 3 02/24/04

ABSTRACT

This report describes the application of Telelogic's Doors 6.0 SR1 Enterprise
Requirements Suite product to a software development project entitled "Dashboard
Software Metric Visualization for SQR" (SMV). The software project consisted of all
aspects of requirements engineering but was completed without any automated
requirements engineering management software. The software project artifacts directly
concerned with requirements engineering were subsequently managed using the
Telelogic's Doors product. This management could then be used as a baseline to compare
the usefulness of the Doors product and to make comments concerning the product.

After the introduction, the following pages describe the Doors product and how it was
going to be evaluated with SMV. Subsequently, SMV requirements engineering and
management pre-Doors is then described. SMV using the Doors product is described in
some detail. Finally conclusions about the usefulness of Doors to a software
development project are presented.

Although there are problems of installation and operation of Telelogic's Doors product,
the benefits of using the product and automated requirements management far outweigh
the problems. The problems are enumerated through out the report and from that
perspective this report may appear negative. The report also highlights the clear
advantages for even a small project like SMV that accrue with automated requirements
management. In particular, the insights down to the code level are possible through the
linking and maintenance of requirements through out the systems development life cycle.
These insights provide for not just contractual observations; they also provide assistance
in doing projects themselves.

As a result of retrofitting SMV requirements and 3 cycles of a spiral life cycle including
code through Doors, many comments about the SMV project itself could be made.
Requirements were identified and never met. Code was written that had no link to any
requirement. Impacts of changing requirements spawned by the stakeholders were never
estimated or prioritized. Just done. The quality of software projects could be enhanced
through even informal requirements management and greatly improved through
automation of the requirements engineering process. It is not that there was not any
requirements management in SMV. It is that by automating and highlighting
requirements management additional insights into the project itself are possible.

C:\Westmost\wm010\assign3\a3_doors.DOC Page 4 02/24/04

1. INTRODUCTION
The following paragraphs provide some comments concerning requirements
management. Following those comments, a discussion of why the SMV project was used
in this report is provided. Finally, the approach to using the Telelogic's Door product
with SMV is discussed.

1.1 Requirements Management
One comment on requirements management that is not often made, is that
requirements management provides a way of achieving closure on a given project.
By agreement not to pursue requirements or by completion of all prioritized
requirements, closure on a project can be proven. However, requirements
engineering is not just concerned with project closure. It is also concerned with:
- The capturing of project requirements.
- Tracing requirements through project artifacts.
- Measuring and identifying the impacts or changing requirements with in a

project. And,
- The answering of whether all requirements of a given project have been met.
One advantage of an automated requirements management product is that it can
provide a baseline for measuring project change. In the SMV project, the first
prototype was considered a baseline. Indexing or numbering of requirements did
not occur until the first prototype was built.

1.2 Why SMV - Software Metric Visualizer
In the SMV project, requirements management was not well done from the point
of view of managing requirements. Requirements were successfully elicited and
described both in writing and diagrammatically. However, requirement
identification through numbering and tracing was not accomplished until well into
the project.

The stakeholders of the SMV project consisted of sponsors (both academic and
industrial), a project manager, developers, and a user community or group. These
stakeholders subsequently became some of the views used in the Doors / SMV
review.

SMV was a small project consisting of 100,000 lines of code (100 KLOCs) and
50 or so requirements. This made it readily possible to use Doors through all
aspects of requirements engineering management as a microcosm of a larger
project. Doors was applied to SMV artifacts from requirements elicitation
through to coding.

SMV was a master's project. It consisted of building a working source line
visualizer with 3 prototypes completed, end-user evaluation and numerous
artifacts. Artifacts included a shareware working SMV run time disk; PowerPoint
slides; Adobe documents; Work documents; Visual Basic code; Install Shield
code and DLLs; and market place, end user, and developer requirements

C:\Westmost\wm010\assign3\a3_doors.DOC Page 5 02/24/04

SMV was chosen because it was a contained project in which to apply Doors.

1.3 Approach to applying Doors to SMV
The approach to applying Doors to SMV consisted of converting selected
requirements documentation and artifacts to Doors. Evaluation of Doors while
doing the conversion. Then trying multiple Doors features to address how SMV
could be helped with respect to requirements management both historically and
for future development. Through out the above activities, documentation of what
was occurring was completed for this report.

2. DOORS
There were many expectations of using Doors. A summary of Doors expectations is that
Doors:
- Stores requirements using industry standards and templates.
- Adds attributes and or columns to requirements for sorting and filtering
- Links requirements with project artifacts and maintains the traceability chain both

with fan-in and fan-out to SMV requirements
- Creates views of requirements by stakeholder need-to-know, and
- Handles changing requirements in an automated way.
This section of the report provides evaluation criteria to requirements management
solutions. In addition it provides how requirements both functional and non-functional
are met in SMV possibly using Doors.

2.1 Evaluation Criteria of Requirements Management Solutions
A major personal evaluation consisted of ease of use and rapid learning of a tool
such as Doors with out the use of hardcopy or compiled help files and/or training.
Other evaluations from industry include:
- How Doors captures requirements;
- What infrastructure that Doors uses to support requirements management;
- How does Doors support requirements flow through out the SMV project;
- How are requirements tracked, traced and their impacts measured;
- How does Doors use the SMV artifacts that were not contained in the Doors

environment;
- How does Doors communicate across the SMV user community; And
- What is Doors look-and-feel in say the Windows networking environment.

2.2 Additional Non-Functional Requirements Management
The evaluation criteria above is more related to the functional needs of a
requirements management solution. However there are also some non-functional
requirements that should be used for evaluation. How a product such as Doors is
installed and some of its possibly missing features are also causes for evaluation.

2.2.1 Installation of Doors

C:\Westmost\wm010\assign3\a3_doors.DOC Page 6 02/24/04

There were problems associated with the installation of Doors mostly related to
security and the Windows environment it was going into. (paths in particular
including the license location and registry took time to set up) These problems
were readily over come by exploration and multiple installation attempts;
however, Doors did not install the way many other software products install in the
Windows environment and took some shoe horning.

2.2.2 Features expected and not provided
A more severe problem from the point of view of evaluation of Doors were the
features expected and not provided (perhaps in this version of the software).

Direct import from Windows required a higher skill level then anticipated for
SMV Windows based artifacts. A work around was developed for implementing
SMV requirements artifacts but it was a non-obvious work around. In particular,
Doors table like structure and/or metaphor seemed to be the problem with Words
table objects.

The following table describes the Doors / Microsoft Office Productivity Suite as
guessed by the author.

Table 1 Doors descriptors applied to Microsoft Office Productivity Tools

Doors Microsoft Office Productivity Suite
Attribute Field or Column
Object (OLE look-a-like in MS terms) Record or Row
Module Table or Worksheet
Project File
Proprietary Data base / Server SQL Server / Access

Many of the problems of using Doors with SMV could be ascribed to the above
table and its related metaphor. Tables in Word did not import correctly to Tables
in Doors. Exporting of Tables in Doors would crash the Doors environment if not
exported using rich text format. Using the Word format, the Word styles of SMV
did not readily translate to vanilla Doors. All of these problems were overcome,
but the learning curve was steeper than expected. Doors appeared to be database
centric and that the database is proprietary. However, all information is retained
in the Doors database and most of the clashes between the Doors look-and-feel
and the Windows look-and-feel appear related to the Doors database. It is likely
that the database has limited SQL capabilities since insertion of SMV items into
the database was akin to insertion into many enterprise resource packages.

2.3 Subsequent approach to SMV
Problems with simple creation with in Doors were few. However, SMV was
being Doors retrofitted. So work arounds were developed. These work arounds
actually proved the power of what Doors was capable of. For example, most
industry standards were already formatted as templates in Doors. By using these

C:\Westmost\wm010\assign3\a3_doors.DOC Page 7 02/24/04

templates considerable number of Word style problems could be eliminated. This
consisted of
- Exporting formatted shell documents.
- Cutting and pasting from SMV documents and artifacts into shells.
- Retaining Doors Word styles along with formatted shells.
- Deleting old shell documents in Doors.
- Importing revised Word documents into Doors. And,
- Making new documents in Doors the revised documents.

This work around worked for straight text; however, when importing Word tables
into Doors, the Module and/or Object capabilities seemed to create undetermined
results in the final Doors document.

3. SMV PRIOR TO DOORS REQUIREMENTS
MANAGEMENT
This section describes requirements engineering prior to using Doors. After just
reviewing the Doors product and not yet having applied the product, considerable
improvements in SMV requirements engineering could be obtained.

3.1 Documents and Requirements of SMV
Figure 1 SMV Directory Structure

In figure 1, the directory structure of SMV is provided in a Windows
environment. In point 1 indicated, note that there are several different kinds of
SMV artifacts. In point 2 note the revision control system of SMV is manual and
consists of milestone and/or key date backups of the entire software under
development. Note in point 3, that there are builds of different SMV prototypes.
Requirements are captured and should be linked in all areas. In table 2 following

C:\Westmost\wm010\assign3\a3_doors.DOC Page 8 02/24/04

the requirements are listed without using the Doors indexing system. These
requirements are listed in the order of prioritization by the stakeholders.

Table 2 SMV Requirements With-out Doors

Requirement Sc
al
e

Rationale

a1 Capture 'raw' statistics of code
productivity

a Core functionality of a visualizer. Presentation
of these statistics is not necessary if they can be
viewed appropriately.

a2 Drill down on visualized abnormalities a Provides a way of viewing the source code to
inspect whether an abnormality is real or
imagined

a3 Selectable targets of visualization
including author, variables, language
constructs, words

a Provides a way of selectively visualizing.

a4 View change events consisting of change
of author, code modification, other

a Core operation of a visualizer. It major change
events can not be viewed then you do not have a
visualizer.

b1 Capture significant views for presentation
and discussion

b Provides a way of using visualization for human
resource issues and/or maintenance issues.

b2 Easily retrieve SQRs for visualization b Provides a way of importing SQRs for
visualization

b3 Highlight abnormal change events b Provides an automated way of viewing change
events

b4 Interface to version control software such
as PVCS, MKS, Rational, other

b Provides an easy way of capturing change
events of interest.

b5 Provide ad hoc reporting of statistics not
just pre canned statistics

b Provides a way of retrieving statistics of interest
by passing out-of-the-box visualizations.
Allows for more custom visualizations.

b6 Provide feedback on the visualizer
operation

b Assists a visualization user to make appropriate
use of the visualizer.

b7 Provide rapid learning of visualizations
including legend and titling

b Assists in moving up the learning curve faster.

b8 Provide snap shot capability for before
and after timed views

b Provides a way of measuring changes in terms
of percentages at a macroscopic level.

b9 Set colour codes for author, for language
construct, for variable

b Provides a way of distinguishing statistics of
interest in a visual form.

b10 View a whole SQR application not just a
program

b Provides a way of managing application report
suites

b11 View programmer language style b Provides a way of viewing particular developers
way of using the language.

c1 Export visualizations to other office
productivity tools such as Visio, Word,
other

c Provides a way of enhancing the visualization.

c2 Interface to developer tools such as
TextPad, Brio Report Builder, other

c Provides an easy way of making changes after
viewing a change event.

c3 Provide thin client for visualization to the
web

c Provides a way of managing SQR development
in multiple geographic locations.

c4 Set level of view such as an elevation
ascend/descend

c Provides for scalability of view. Results in
settable levels of granularity.

c5 View consistency of programmer style c Provides a way of viewing language style
independent of kind of language construct.

C:\Westmost\wm010\assign3\a3_doors.DOC Page 9 02/24/04

c6 View history of visualizations including
archiving of significant visualizations

c Provides a way of making routine a series of
visualizations say from year to year.

d1 Convert visualizations into statistics or
statistics into visualizations

d Provides another media for understanding
underlining change events.

3.2 Traceability and Tracking
An important concern of software development is the relationship of the code to
requirements. The evaluation copy of Doors that was used did not provide
interface modules into revision control systems. In any case, SMV followed a
homegrown revision control system as demonstrated in the directory structure.

Figure 2 Review of Visual Basic Code

In figure 2, a view of Visual Basic code artifacts is provided. In particular, note
the file extensions frm and bas. These are forms with code and subroutine code.
SQR is another languages source code artifact and an extension. Note that mdb is
an Access database extension. So what is the relationship between say the
requirements of SMV and the code of SMV? This relationship will be explored in
the next figure. But through out this report, requirements will be linked from
elicitation until coding. Hence the mentioning of code extensions.

C:\Westmost\wm010\assign3\a3_doors.DOC Page 10 02/24/04

Figure 3 Relationship of Requirements to Software Products Without Doors

The above figure relates requirements previously given (1) with code of SMV(2).
Later the same relationship will be provided in Doors. However, this relationship
was never done in the original SMV project at this level of detail. Only at the end
user level of detail.

3.3 Configuration Management
Versioning builds, prototypes, and code control in SMV consisted of the directory
structures previously shown. Requirements were never linked across directory
structures or across artifacts. Requirements were linked only in the views of the
project manager and the developers. This did not include the user community or
the user group testers. SMV was presented at user conferences; however,
requirements validation was never shown.

C:\Westmost\wm010\assign3\a3_doors.DOC Page 11 02/24/04

4. SMV WITH DOORS
This section of the report is the main body of original requirements engineering work. It
consists of a collection of activities performed and comments made when applying Doors
to SMV.

Doors is document oriented within its proprietary database as opposed to say graphic
oriented. (Not used with SMV was UML graphic techniques. Comments on whether
Doors handles UML linking other than use cases can not be made in this paper) So many
of the images used in this report would be special cases in Doors. In the demonstration
package used for SMV there was not any import of Microsoft PowerPoint presentation
file structures possible. It is expected that this exists but no work arounds were
developed for the version of Doors provided.

Templates within Doors were excellent for standards building and meeting. These
templates provided information content and structure. However, the standards did not
always translate into Microsoft Word styles and required good editing in order to match
for Doors import. Indeed Microsoft Word documents that were created independent of
the given standards and had their own style sheets were difficult to import into Doors,
especially Word documents with imbedded tables.

4.1 Conversion to Doors
Figure 4 Doors Directory Structure

The Doors directory structure can model the Windows directory structure and this
became an important way of visualizing SMV conversion to Doors. It also
provided some ease of learning. Security prevented some forms of directory
matching.

C:\Westmost\wm010\assign3\a3_doors.DOC Page 12 02/24/04

Figure 5 Example Start of 11 page Doors User Requirements Document

The above figure is provided to show the reader the capture of SMV requirements
within the Doors product. Retention of the SMV requirements indexing is also
shown in order to make the translation from before and after Doors. Further, the
requirements indexed (2.2.1 d1 for example) were the first prototype
requirements. In the second spiral of SMV development, end user tasking was
used as high level requirements. Some features of the final SMV tool never made
it to any of the three requirements' spirals. The use of a legend on each
visualization of SMV just appeared as a nice-to-have feature and was never
captured as a requirement.

C:\Westmost\wm010\assign3\a3_doors.DOC Page 13 02/24/04

Figure 6 Initial Doors SMV Documents

The above figure shows the many SMV documents and requirements that were
captured and entered into Doors. The extreme left-hand document shows the
initial requirements. The next pane shows technical requirements using a selected
industry standard template. The middle pane shows attempts at graphic artifact
requirements capture within the Doors product. The next pane shows testing and
revision of some high level requirements to include end user task scenarios.
These came directly from the user group prototype testing. The final pane shows
the code developed and listed within the Doors product. Note the frm before the
program name is the same frm of figure 3.

C:\Westmost\wm010\assign3\a3_doors.DOC Page 14 02/24/04

4.2 Identifying and Capturing Requirements
Using the work around previously discussed of exporting a style sheet and
importing the revised style sheet, it became very easy to enter SMV requirements
that had been previously typed. The ability to enter requirements directly within
the Doors product was also performed and this too was quite easy. The figure
below shows some of the end user task examples entered as requirements. These
were originally not identified as requirements but through the use of Doors
became easy to measure requirement benchmarks.

Figure 7 Doors Capturing of SMV Requirements

4.3 Features of the Doors tool used

Figure 8 Use of Doors Wizards

C:\Westmost\wm010\assign3\a3_doors.DOC Page 15 02/24/04

Not all features of the Doors tool were used. However, there were some notable
features used. The previous figure shows the use of Doors wizards. The wizards
provided considerable enhanced capability. Reports directly out of Doors could
be produced. These reports in rich text format could be easily edited and
highlighted with revised text. Originally it was envisioned that this report would
be produced within Doors itself. Several problems with Doors handling of
graphics prevented completing the report within the timeframe available.
Exporting and importing of rich text formatted documents in multiple layouts was
very easy as is shown below. All requirements could be captured in multiple
ways and imported and/or exported as needed.

Figure 9 Use of Doors Import/Export of Rich Text

4.4 Requirements Project Flow
Doors enforced requirements project flow. Although the systems development
life cycle of SMV was spiral, Doors had no problems capturing requirements in
all 3 prototypes and in linking these requirements.

4.5 Tracing Requirements and Linking
One of the most exciting features of migrating SMV to Doors was the tracking,
tracing, and linking of requirements. The figure below shows some of the links
that were developed using the Doors product. This figure could be compared to
figure 3 "Relationship of Requirements to Software Products without Doors".
This is truly a way of providing insight into requirements engineering that would
not exist with out some form of requirements management automation.

C:\Westmost\wm010\assign3\a3_doors.DOC Page 16 02/24/04

Figure 10 Doors Tracing Requirements through to Code

4.6 Verification of Requirement Completion
The requirements tracking would not be complete without analysis of how those
requirements relate and interact together. Here Doors again provided insight that
could only be accomplished prior to SMV being in Doors though extensive sweat
equity. If the preliminary analysis of the requirements had been used through
Doors, the spirals of SMV might have been better documented. For sure impacts
of requirements on the spirals would have created more managed spiral
development. Again, this was so readily easy to use that the value of a Doors
implementation might be justified on this insight alone.

C:\Westmost\wm010\assign3\a3_doors.DOC Page 17 02/24/04

Figure 11 Use of Doors Analysis

4.7 Not Enough Low Level Requirements
It became clear when moving SMV requirements to Doors that many
requirements were not fulfilled. But one of the more surprising results was that
the original SMV requirements were not detailed enough. Although SMV was
not completed using a project management package such as Microsoft Project, it
was completed using milestone progress reports and Gantt charts. So higher level
requirements were captured and to some extent managed. However; lower level
requirements or next spiral requirement details were never fully captured,
measured, or tracked. What a comment on the SMV project.

4.8 History of Requirement Changes Available
Since there were not enough low level requirements captured in SMV, this led to
the questioning of whether there was adequate history of requirement changes in
pre-Doors SMV. The answer is obvious. History of requirement changes was
never documented. It was captured within the stakeholders and in particular by
the user group testing and reviews. But it was never documented in even an

C:\Westmost\wm010\assign3\a3_doors.DOC Page 18 02/24/04

informal sense. Again, a clear demonstration of the advantages of a requirements
management software tool. With respect to 'agile methods' requirements
management, this is clearly not well done with a code-and-go approach either.
[Eber2002]

4.9 DXL - Not for Everyone
The conversion from SMV requirements to Doors did not require the use of DXL,
the Doors programming language. As a result, the only comment made is that
there may be features with direct applicability to SMV requirements that were
never tried. Doors is quite feature rich.

4.10 Interfacing Out and Documentation
The following is a listing of whines and bouquets concerning the conversion of
SMV to Doors and some of the problems encountered that may be addressed in
other versions of Doors than the one provided for evaluation.

4.1 Microsoft Office Suite Products

Figure 12 Doors Bugs and Locks

Although mentioned earlier, the metaphors and related paradigms of Windows
and Doors clash upon occasion. Doors does not gracefully fail but attempts to run
a debugger that the end user has no access to. Further, the objects that Doors was
working on at the time become locked by the parent object owner and appear to
revert to earlier versions of the object. An alternative strategy would be to
identify the location in the object that had focus at time of failure. Further, Doors
objects do not retain sizing history of open views. They must be resized each
time opened. Again insertion into the propriety database is very large system
SQL like. This is not a problem once up the learning curve, but is counter to the
Microsoft Office Suite look-and-feel. (Even though under the wraps Doors might
be a Back Office application?) So a prioritized requirements list must be inserted
in reverse order, in order to get correct numbering. Exporting to Microsoft Word
did not work in Word format. However, it did work in rich text format.

C:\Westmost\wm010\assign3\a3_doors.DOC Page 19 02/24/04

4.2 Use the Web
Doors information through the use of the Telelogic resource centre and through
straight web browsing was excellent. Relevant information could be obtained
through white papers and user group productions.

4.3 Compiled Help
The compiled help feature of Doors was also excellent in providing understanding
of the software. However, overview of requirements management could be better
done and the why of requirements management could have been better done.
Also, having to use the help indicated that the Doors product did not meet one of
the earliest major expectations - " ease of use and rapid learning of a tool such as
Doors with out the use of hardcopy or compiled help files and/or training."

5. CONCLUSIONS

The table below provides a summary of improvements by Doors / Non-Doors comparison
on the SMV project. Note that not all features of Doors were used. Only those features
that were needed for the SMV project.

Table 3 Summary Improvements With Doors

Comparison
Description

Pre- Doors Doors

Capture of
Requirements

- Humans had to convert
requirements from
interviews, questionnaires,
JADS, etc.

- Only office suite
productivity automation

- Humans had to convert
requirements from interviews,
questionnaires, JADS, etc.

- In addition there are templates that
represented industry association
standards

- Doors had a decided edge in ease
of subsequent use as is shown in
this document

Tracing
Requirements

- Prior to seeing Doors the
only tracing of requirements
was end user testing and end
user memory

- Doors is absolutely better in that
the linking of requirements
through multiple project artifacts
was point and click.

Changing
Requirements
and Impacts

- Requires intimate
knowledge of all system
development life cycle
products including the code.

- Because of the trace linking impact
assessment is a matter of following
the linking and is very easily done.

Maintenance - Market or user driven, not - Easy to find relationships among

C:\Westmost\wm010\assign3\a3_doors.DOC Page 20 02/24/04

of SMV necessarily based on need. requirements.
- Major revisions are subsequently

possible with their impacts
identified

Focused
Development
Effort

- Based on end user or
developer input

- Objectively based on agreed
prioritization.

- Development effort is scalable
with easier to identify budget high
water marks.

Assurance all
requirements
met

- In relating requirements to
code it is obvious there are
missing requirements and
code not matched to
requirements.

- All requirements were linked to
code and 'orphaned' code was
clearly shown.

Index of
Requirements

- Index and numbering of
requirements was manual
and based on a 'home
grown' system.

- Indexing was automatic. For Doors
testing purposes both numbering
approaches were used and this showed
the problems of a manual approach.

Linking of
Requirements

- Never done in original
project.

- Tedious after the fact
activity

- Drag and drop linking!

Detection of
Requirements
Interaction

- Not readily possible. Relies
on intuition of developer.

- Absolutely clear, recordable, and
actionable.

5.2 Interface Improvements
It is clear from this report that some approach to importing and exporting should
be rethought within Doors for the novice or inexperienced user. A possible option
here might be to extend the excellent use of Doors wizards to check for
import/export document styles or templates. Since this is such an easy idea it is
likely available with an alternative version of Doors or from a third party after
market vendor.

5.3 Excellent Collaboration
Although not tried with SMV, the collaboration capability of Doors seems
excellent. Most developers would like to know their contribution to a given
project. Having requirement fan-in and fan-out complete with requirement

C:\Westmost\wm010\assign3\a3_doors.DOC Page 21 02/24/04

chaining, developers would be able to view their code production to requirements
met. Quite a concept for some low level CMM shops.

5.4 Change the Doors Metaphor
The Doors metaphor to the Windows environment is excellent. However, it needs
to be extended with other Microsoft Office Suite look-and-feel. Many customers
of the Doors customer base might be using alternative platforms including
alternative office suites; however, if rich text formatting is the interchange media,
then Doors should present it that way to the novice or intermediate user. The
spread sheet metaphor fits with many technocratic views of requirements
engineering; however, much progress in requirements engineering occurs through
the use of graphics, diagrammatic, and craftsman like approaches to doing
requirements management.

5.5 Overhead versus Efficiency
The author's original concerns in using a product such as Doors to do
requirements management as being overhead intensive with out any pay back
were wrong. Using SMV with Doors it became very clear that the comparison of
pre-Doors and post-Doors requirements was not a fair comparison. Doors
provides a level of insight that is not readily apparent in the crush of doing
projects. This insight could translate into better products and more timely
projects. There is a role to fill by requirements management automation tools that
has applicability even on small projects.

5.6 Putting this Document in Doors
However, the Willson's test of using Doors as a requirements management tool
for all projects, requires that this document be readily imported into Doors. And
that during that importing that the requirements are extracted from this document
for the son of SMV project. Further the graphics and tables used be imported
also.

C:\Westmost\wm010\assign3\a3_doors.DOC Page 22 02/24/04

Appendices

A. References (This document)

[Eber2002] Armin Eberlein & Julio do Prado Leite,
Agile Requirements Definition: A View from Requirements Engineering,
http://www.enel.ucalgary.ca/People/eberlein/publications/index.html

[KotoSom1998] Gerald Kotonya & Ian Somerville, Requirements Engineering:
Processes and Techniques, John Wiley & Sons Ltd, West Sussex, England

[Tele2003] http://www.telelogic.com/

B. References (SMV exported from Doors)

Pasted from exported Doors User Requirements Document

"1.4 References"
[Booch2002] Grady Booch Quality Software and the Unified Modeling Language,
Rational Software Corporation, 2002, <http://www.rational.com/>

[Brio2002] Brio Performance Suite 8, Brio Software <http://www.brio.com/>

[Burton1994] Peter Burton SQR User's Guide and Developer's Kit 1994 MITI Long
Beach, CA

[Dask1992] Michael K. Daskalantonakis A Practical View of Software Measurement and
Implementation Experiences Within Motorola IEEE Transactions on Software
Engineering, vol. 18, no. 11 (November 1992), pp. 998-1010.

[Dbminer2002] DBMiner, DBMiner SX 2002, <http://www.dbminer.com/>

[Dumke1999] R. Dumke Metrics Tools - An Overview. Metrics News, 4(1999)1, pp. 21-
28

[Eick1992] S.G. Eick; Steffen, J.L.; Sommer, E.E.: Seesoft -- A Tool For Visualizing Line
Oriented Software Statistics. IEEE Transactions on Software Engineering, 18(1992)11,
pp. 957-968

[Eick1996] Thomas A. Ball and Stephen G. Eick. Software visualization in the large,
IEEE Computer, April 1996, pp. 33-43.

http://www.telelogic.com/

C:\Westmost\wm010\assign3\a3_doors.DOC Page 23 02/24/04

[Emden2002] Eva van Emden, Leon Moonen, jCosmo - Java Code Smell Browser Tool,
<http://www.cwi.nl/projects/renovate/javaQA/>

[Florac1999] William Florac and Anita, Carleton, Measuring the Software Process,
Addison Wesley, Reading Mass.

[GM2002] FQS Poland, User Manual, Ghost Miner, 2002,

[Gutwin1999] Carl Gutwin, Visualizations of Interaction, Technical Report 99-1, HCI
Lab, University of Saskatchewan, 1999

[Knight2000] Claire Knight, System and Software Visualizations, Handbook of Software
Engineering and Knowledge Engineering, 2000, <http://www.durham.ac.uk/>

[Kuh1994] I. Kuhrau A Tool-Based Analysis of Borland C++ Master’s Thesis,
University of
Magdeburg, February 1994.

[Landres1999] Galina Landres and Vlad Landres SQR in Peoplesoft and Other
Applications 1999 Manning Pulbications, Greenwich, CT

[Miller2002] Darrin Miller Harnessing SQR Brio Software User’s Conference
November 2002, <http://www.brio.com/>

[Mellen1998] Don Mellen SQR Programmer Reference 1998, Ray Ontko & Co,
Richmond, Indiana
[Norman1990] Donald Norman, The Design of Everyday Things, Doubleday, New York,
New York
[Nielsen1999] Jakob Nielsen Interfacing with Jakob Nielsen June 1999
<http://www.useit.com/>

[Qsm2002] QSM Company, The SLIM Software Tool Suite, 2002,
<http://www.qsm.com/>

[Sgi2002] Silicon Graphics Mindset , 2002, <http://www.sgi.com/go/mindset/>

[Sorenson1993] Boloix, G., Sorenson, P.G. and Tremblay, J.P Software "Metrics using a
Metasystem Approach to Software Development", International Journal of Systems and
Software 20, 1993: 273-294.

[Swanson2001] Gregory Swanson and Lee Globus Visualization for a Graphical
Programming Environment, Nielsen 2001, <http://www.tslice.com/>

[Tao1999] Xie Tao, Huang Huang, Xiangkui Chen Object Oriented Software Metrics
Technology 1999 Ricoh Company Ltd. Tokyo, Japan & Software Quality Evaluation
Group Peking University

C:\Westmost\wm010\assign3\a3_doors.DOC Page 24 02/24/04

[Toth1996] R. John, J. Madhur, R. Stewart, K. Toth, Software Quality Metrics Process
For Large Scale Systems Development, 1996 INCOSE Symposium, July 1996

 [Willson1998] John Willson, Stephanie Crafford U.S.A. Computer Consulting - For
Canadians and Other Aliens, 1998, DSS Ltd. <http://www.dssltd.com/>
[Willson2001] John Willson EXtreme SQR Programming, Unpublished Brio 2001
presentation, <http://www.dssltd.com/whitepapers/>
[Wong1996] Kenny Wong On Inserting Program Understanding Technology into the
Software Change Process Fourth Workshop on Program Comprehension (WPC 1996)
[Wong1999] Kenny Wong The Reverse Engineering Notebook, PhD. Thesis, Department
of Computer Science, University of Victoria <http://www.cs.uvictoria.ca/>

	ABSTRACT
	�
	1. INTRODUCTION
	1.1 Requirements Management
	1.2 Why SMV - Software Metric Visualizer
	1.3 Approach to applying Doors to SMV

	2. DOORS
	2.1 Evaluation Criteria of Requirements Management Solutions
	2.2 Additional Non-Functional Requirements Management
	2.2.1 Installation of Doors
	2.2.2 Features expected and not provided

	2.3 Subsequent approach to SMV

	3. SMV PRIOR TO DOORS REQUIREMENTS MANAGEMENT
	3.1 Documents and Requirements of SMV
	3.2 Traceability and Tracking
	3.3 Configuration Management

	4. SMV WITH DOORS
	4.1 Conversion to Doors
	4.2 Identifying and Capturing Requirements
	4.3 Features of the Doors tool used
	4.4 Requirements Project Flow
	4.5 Tracing Requirements and Linking
	4.6 Verification of Requirement Completion
	4.7 Not Enough Low Level Requirements
	4.8 History of Requirement Changes Available
	4.9 DXL - Not for Everyone
	4.10 Interfacing Out and Documentation
	4.1 Microsoft Office Suite Products
	4.2 Use the Web
	4.3 Compiled Help

	5. CONCLUSIONS
	5.2 Interface Improvements
	5.3 Excellent Collaboration
	5.4 Change the Doors Metaphor
	5.5 Overhead versus Efficiency
	5.6 Putting this Document in Doors

	Appendices
	A. References (This document)
	B. References (SMV exported from Doors)

